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Research on a bifurcation location
algorithm of a drainage tube based on 3D
medical images
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Abstract

Based on patient computerized tomography data, we segmented a region containing an intracranial hematoma
using the threshold method and reconstructed the 3D hematoma model. To improve the efficiency and accuracy
of identifying puncture points, a point-cloud search arithmetic method for modified adaptive weighted particle
swarm optimization is proposed and used for optimal external axis extraction. According to the characteristics of
the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal, the proposed
algorithm can provide an optimal route for a drainage tube for the hematoma, the precise position of the puncture
point, and preoperative planning information, which have considerable instructional significance for clinicians.

Keywords: Multitube drainage tube, Bifurcation localization algorithm, 3D medical image, Path planning,
Intracranial hematoma

Introduction
Trauma can cause blood vessels to burst in the
brain or between the skull and brain tissue. Sub-
sequently, an intracranial hematoma may form from
blood pooling up in the brain or between the skull
and brain, which compresses the brain tissue. An
intracranial hematoma is a common but serious
secondary damage mode of craniocerebral injury.
The incidence of closed craniocerebral injury is ap-
proximately 10%, while the incidence of severe cra-
niocerebral injury is approximately 40%–50%. The
complications of intracranial hematomas include
their effect on cerebral blood flow, cerebral hernia,
cerebral edema, and Cushing’s reaction, which can
seriously damage brain tissue, and some of these
damage modes are irreversible and life-threatening
[1–4]. Puncture and ablation of the intracranial
hematoma is a widely used medical method. With
the increasingly busy modern life, heavy work stress,
mental pressure, and lack of physical labor, the

incidence rates show that the age of onset of this
condition is decreasing. Once it occurs, the disease
places a burden on individuals and families, so all
countries and the international community have
attached considerable importance to it [2]. The
advantages of puncture operation include effective
application, high security, quick recovery, short
operating time, and relatively few postoperative
complications [5–7]. At present, the methods of
positioning such as the stereotactic technique [8]
and neuronavigation technique [9] mainly involve a
freehand technique for insertion of a drainage tube,
which is based on fixed anatomical landmarks, does
not consider individual variations, and often exhibits
insufficient precision. Hence, a time-efficient and
low-cost technique to localize the hematoma punc-
ture point and to provide path planning will be
beneficial, especially when highly sophisticated and
expensive navigation systems cannot be made avail-
able in developing regions. In the present study,
according to a dataset of brain computerized tomo-
graphy (CT) images, we reconstructed the 3D model
of a patient’s brain by using a 3D Slicer software
[10–14] and extracted the area of intracranial
hematoma as well. To quickly find the best
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puncture point in theory, an algorithm based on k-
means clustering [15] was proposed to optimize the
search space, eliminate redundant computation, ef-
fectively sort out the search space, and reduce the
possibility of particles falling into a local extremum
[16]. Then, the algorithm is improved from the
viewpoint of the search mode, and the point cloud
search algorithm of adaptive weighted particle
swarm optimization [17–19] is proposed, which
greatly reduces the calculation time and the number
of iterations of the algorithm. In the experimental
environment, the algorithm proposed in this study
can greatly improve the search efficiency of this
method in obtaining the global optimal solution.
Compared with the direct optimization algorithm
[20], the average maximum acceleration ratio is
1288.67%. According to the characteristics of the
multitube drainage tube [21] and the clinical needs
of the puncture process for intracranial hematoma
removal, the bifurcation location algorithm provides
the precise position of the puncture point, the
optimum location of probes, and the best route
under ideal conditions. In this study, the 3D model
is effectively combined with the multitube drainage
tube; furthermore, a preoperative simulation is pro-
posed, which can provide significant guidance and
value in formulating the puncture operation plan
and decreasing the risk of blindness.

Segmentation of the intracranial hematoma
In clinical medicine, for patients with an intracranial
hematoma, most hospitals conduct CT, hematoma
location, puncture marking, followed by other pro-
cesses [5, 6]. We used the 3D Slicer software to im-
plement three-dimensional reconstruction based on
brain CT data. This approach can greatly reduce the
treatment time and improve efficiency. 3D Slicer
software can reconstruct anatomical parts such as
the hematoma, blood vessels, skull, and nerve bun-
dles. In this way, doctors can avoid important parts
such as blood vessels and nerve bundles when they
mark the puncture points and accurately and effi-
ciently puncture the hematoma, thus reducing treat-
ment time [12–14]. The 3D Slicer program is a
software platform for the analysis (including registra-
tion and interactive segmentation) and visualization
(including volume rendering) of medical images and
for research in image guided therapy. The platform
originated in an MSc thesis program in 1998 and is
jointly sponsored by the Surgery Plan Laboratory at
Brigham and Women’s Hospital and the Artificial
Intelligence Laboratory at the Massachusetts Institute
of Technology [10–12].

Hematoma modeling
After the CT data have been preprocessed, three-
dimensional reconstruction of the brain can be realized
to obtain a three-dimensional image. In 3D Slicer, the
region of interest (ROI) function is used to extract the
hematoma area in the image, and the Segmentations
module is selected to model the hematoma, providing
models in the STL and OBJ formats to extract the “opti-
mal external central axis” needed in this study.

Hematoma location locking
First, the Paint function in Slicer is applied to draw the
hematoma, and then, the Fast Marching Method is used
to draw the models of the intracerebral hematoma
within a three-dimensional sphere, which is of great help
in the follow-up work. Finally, the three-dimensional
sphere is initialized by the Fast Marching function. Be-
cause the mask area around the hematoma is very large
after initialization, the mask is narrowed by adjusting the
slider for Segment volume, and the position of the
hematoma is locked (Fig. 1).

Applying the threshold method to segment the
hematoma
We select the Threshold function, in which the
threshold is set to 50–100, set the selected intensity
range to an editable intensity for the mask, and then,
convert the masked area into a 3D model. For mul-
tiple small masks that appear in CT images, we use
the Smoothing function to make the hematoma easier
to segment by removing protrusions and filling holes
to make the segmentation boundaries smoother. After
smoothing, we use the Islands function to segment
the hematoma from the numerous masks. We select
the Keep selected island and click on the hematoma
to segment it (Fig. 2). For specific modeling steps and
methods, please refer to ref. [12].

Methods
Basic concept and definition
As an effective tool to describe the morphological
characteristics of the geometry, the center axis has
many advantages; for example, it can describe the
geometry information inside the model and at any
position of the boundary [22–24]. Furthermore, it
provides a method to intuitively describe the geo-
metric characteristics of a complex model and repre-
sent the topological relation of the model. The
definition of the external central axis is as follows:
Let Ω be a model in n-dimensional Euclidean space
Rn, and assume it is homeomorphic to a 3D closed
sphere; we define Ω as an n −D model. The external
center axis of Ω is the set of the centers of the max-
imum circumscribed spheres [25]. Inspired by the
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concept of the external center axis, we found the op-
timal external center axis suitable for this study. The
maximum Euclidean distance in the hematoma point
cloud is determined, and the line segment joining
the two points is defined as the optimal external
center axis.

Algorithm of optimal external central axis extraction
The optimal external central axis can be obtained using
a direct optimization algorithm [20]. However, a large
amount of computation is required because the time
complexity increases at the N2 level with an increas-
ing quantity of point clouds. In the case of a large-
scale geometric model, the approach to obtain the
central axis is excessively time consuming. Therefore,
to reduce the computation redundancy, a point cloud
clustering algorithm based on k-means is proposed

to optimize the search space [15, 16]. The algorithm
presents strong adaptive ability, robustness, and low
computation requirements. However, it does not con-
sider the search method, and thus, it is not a suitable
method for extracting the axis. Based on the above
analysis, we propose the point cloud search arith-
metic method for modified adaptive weighted particle
swarm optimization [17–19, 26–30]. The algorithm
reduces computational redundancy and greatly en-
hances the efficiency of searching axes in complex
geometries. Our proposed algorithm is written in
MATLAB (The MathWorks, Inc., MA).

Algorithm flow
The flow of the point cloud search arithmetic method for
modified adaptive weighted particle swarm optimization
based on k-means clustering is as follows:

Fig. 2 Schematic diagram of hematoma extraction. a Mask effect; b Smoothing; and c hematoma segmentation

Fig. 1 Process of distinguishing the hematoma in the yellow circle. a Thresholding; b Using smoothing to optimize staining; c Using Islands to
separate the hematoma; and d The fusion of the hematoma and the three-dimensional map
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Step 1. First, define the data set D in 3D Euclid-
ean space and randomly select n items (n is the
number of selected clusters) as centroids Ci(i = 1, 2,
⋯, n), where each centroid is the clustering center
of a category. Then, calculate the Euclidean dis-
tance between Ci and Dj(1, 2,⋯, k) in D. For ex-
ample, if Dj is the nearest to Ci, it is classified as
cluster i.
Step 2. Through the first step, the data set D is ini-

tially divided into k classes. Calculate the mean value
of each dimension of all data items in each cluster. A
new centroid is formed and updated to the new
centroid.
Step 3. Repeat steps 1 and 2 to obtain the new cen-

troid until the centroid of each class no longer changes.
Step 4. Randomly initialize the particles in the solu-

tion space.
Step 5. Each particle updates its velocity and pos-

ition by tracking its own and the group’s optimal
solution. The velocity updating formula of particle i
in the dth dimension is as follows:

vkid ¼ ωvk−1id þ c1r1 pbestid−x
k−1
id

� �þ c2r2 pbestid−x
k−1
id

� �
ð1Þ

The position updating formula is

xkid ¼ xk−1id þ vk−1id ð2Þ
Repeat step 5 and incrementally iterate until the opti-

mal position of the given threshold is found.
Note: vkid is the d − th dimensional component of

the k − th iterative particle i flight velocity vector; xkid
is the d − th dimensional component of the position
vector; c1c2 is the maximum learning step parameter;
r1r2 is the random function in the range of [0 − 1];
and ω is the inertia weight of the search, which has
a considerable impact on the search scope and
method.
Step 6. Compute the mean distance between d1, d2,

⋯, dn: DEXP ¼ 2�
P

Dij

k�ðk−1Þ , where Dij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi−x jÞ2 þ ðyi−y jÞ2 þ ðzi−z jÞ2

q
denotes the distance be-

tween two clustering centers.
Step 7. Calculate and obtain the difference between Dij

and DEXP: Sij =Dij −DEXP, where ωij denotes the ratio of
Sij to ∑Sij as the generating weight of the small block ωij:

ωij ¼ SijP
Sij
.

Step 8. Dynamically adjust the inertial weight of particles
according to the NAIW method proposed by Li et al. [30].

ω j
i ¼ k � ωmax−ωmin

max Δxti
� �þ ωmin ð3Þ

Δxi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

d¼1
xid−Gdð Þ2

r
ð4Þ

k ¼ iterNum−t
iterNum

ð5Þ

where ωmax and ωmin are 0.9 and 0.4, respectively [20], Δxi is
the distance between the ith particles and the extreme position
of the group, and k is the iteration coefficient. The NAIW
method balances the weight of the particles under different
circumstances, and it has advantages in convergence and
robustness. Figure 3 is the flow diagram of the algorithm.

Optimal path planning
According to clinical demand and geometry sym-
metry, the straight line, where the optimal external
axis is, is the path of the drainage tube into the
brain. The multitube drainage tube can be divided
into two subtubes and three subtube drainage tubes.
The purpose of this study is to provide the corre-
sponding optimal path planning for a specific multi-
tube drainage tube [21]. The Table 1 is the
explanation of symbols.

The known conditions can be determined by M1 and M2

According to the intersection coordinates
M1(x1, y1, z1) and M2(x2, y2, z2), we obtain the
parameter equation of the center axis as
follows:

f
x ¼ x1 þ ðx2−x1Þ t
y ¼ y1 þ ðy2−y1Þ t
z ¼ z1 þ ðz2−z1Þ t

;where 0≤ t≤1 (6)

The midpoint coordinates of M1M2 are M1=2 ¼ ðx1þx2
2 ;

y1þy2
2 ; z1þz2

2 Þ.
The distance from M1 to M2 is d12 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2−x1Þ2 þ ðy2−y1Þ2 þ ðz2−z1Þ2

q
.

The plane equation of M3M4 is

x2−x1ð Þ x−
x1 þ x2

2

� �
þ y2−y1ð Þ y−

y1 þ y2
2

� �
þ z2−z1ð Þ z−

z1 þ z2
2

� �
¼ 0 ð7Þ

The distance from M3 to M4 is d34 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx4−x3Þ2 þ ðy4−y3Þ2 þ ðz4−z3Þ2

q
.

A comparison of the distance between d12 and dBi can
offer directional evidence for puncture surgery.
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f
dB3−dB2

2
þ dB2 < d12; select three−subtubes

dB3−dB2

2
þ dB2 ≥d12; select two−subtubes

ð8Þ

The flow diagram of the bifurcation location algorithm
of the drainage tube is as shown in Fig. 4.

Optimal path planning of two subtube drainage tubes
According to the clinical demand, the best position of
the drainage tube in the hematoma is the midpoint

between the two holes, coinciding with the midpoint of
the central axis, that is, M1=2 ¼ ðx1þx2

2 ; y1þy2
2 ; z1þz2

2 Þ , and
the path of the main drainage tube coincides with the
optimal external center axis.

Calculating the coordinates of B1 and B2

t1 ¼
j M1=2B1 j þ j M1=2M1 j

j M1M2 j ¼ d12 þ dO−d−D
2d12

ð9Þ

Fig. 3 Flow diagram of the algorithm to extract the optimal external middle axis
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t2 ¼ j M1B1 j þ j B1B2 j
j M1M2 j ¼ d12 þ dO þ 2dB−d−D

2d12
ð10Þ

Substituting t1, t2 into Eq. (6), we obtain the coordi-
nates of B1ðxB1 ; yB1

; zB1Þ and B2ðxB2 ; yB2
; zB2Þ.

Calculating the direction vector of the subtube
To find two line segments through M3 with a fixed angle
between this axis and the center axis, let the intersection
points between the line segment and the axis be M31,
M32; these points should meet the following limits:

(

M31M3
				! �M1M2

				!
j M31M3
				! j � j M1M2

				! j
¼ −

ffiffiffi
2

p

2

M32M3
				! �M1M2

				!
j M32M3
				! j � j M1M2

				! j
¼

ffiffiffi
2

p

2

M31M3
				! �M32M3

				! ¼ 0

t31 ¼
d12 þ 2 j M1=2M3 j

2d12

t32 ¼
d12−2 j M1=2M3 j

2d12

ð11Þ

Substituting t31, t32 into Eq. (6), we obtain the coordi-
nates of M31, M32; the direction vector of subtubes are

M31M3
				! ¼ ðm31; n31; k31Þ and M3M32

				! ¼ ðm32; n32; k32Þ, and the
parameter equation of the two subtubes is as follows:
Scenario one:

f
x ¼ xB1 þm31l
y ¼ yB1

þm31l
z ¼ zB1 þm31l

; f
x ¼ xB2 þm32l
y ¼ yB2

þm32l
z ¼ zB2 þm32l

(12)

Scenario two:

f
x ¼ xB1 þm32l
y ¼ yB1

þm32l
z ¼ zB1 þm32l

; f
x ¼ xB2 þm31l
y ¼ yB2

þm31l
z ¼ zB2 þm31l

; ðwhere l≥0Þ (13)

The intersection points between the four rays and the
boundary of the hematoma are B11, B21, B12, and B22.



j B1B11 j þ j B2B21 j ≥ j B12B1 j þ j B22B2 j scenario one
j B1B11 j þ j B2B21 j < j B12B1 j þ j B22B2 j scenario two

ð14Þ

In the first scenario, the coordinates of the probe tip
of the subtube are as follows:

BF
1 ¼ ðxB1þxB11

2 ;
yB1þyB11

2 ;
zB1þzB11

2 Þ;BF
2 ¼ ðxB2þxB21

2 ;
yB2þyB21

2 ;
zB2þzB21

2 Þ (15)
In the second scenario, the coordinates of the probe

tip of the subtube are.

BF
1 ¼ ðxB1þxB12

2 ;
yB1þyB12

2 ;
zB1þzB12

2 Þ;BF
2 ¼ ðxB2þxB22

2 ;
yB2þyB22

2 ;
zB2þzB22

2 Þ (16)

The optimal path planning of three subtube drainage tubes
According to the clinical demand, the best position of
the drainage tube in the hematoma is the midpoint of
the second hole, coinciding with the midpoint of the
central axis, i.e., M1=2 ¼ ðx1þx2

2 ;
y1þy2
2 ; z1þz2

2 Þ, with the path
of the main drainage tube coinciding with the optimal
external center axis.

Calculating the coordinate of B1, B2, and B3

t11 ¼ j M1B1 j
j M1M2 j ¼

d12−d−D
2d12

ð17Þ

t12 ¼ j M1B2 j
j M1M2 j ¼

d12 þ 2dO−d−D
2d12

ð18Þ

t13 ¼ j M1B3 j
j M1M2 j ¼

d12 þ 4dO−d−D
2d12

ð19Þ

Substituting t11, t12 and t13 into Eq. (6), we obtain the
coordinates B1ðxB1 ; yB1

; zB1Þ, B2ðxB2 ; yB2
; zB2Þ, and B3ðxB3 ;

yB3
; zB3Þ.

Table 1 Notation

Symbol Description

M1(x1, y1, z1), M2(x2, y2,
z2)

The coordinate of the joint point of the optimal external axis and the boundary of the hematoma

d12 = ∣M1M2∣ The distance from M1 to M2

d34 = ∣M3M4∣ The maximum diameter of the vertical surface through M1/2 in the hematoma

M3(x3, y3, z3), M4(x4, y4,
z4)

The coordinates of the endpoints of d34 in the hematoma

D, d Ddenotes the diameter of the duct in the main tube; d denotes the diameter of the hole in the subtube

dO The distance between the two central points of the holes

dB The distance between the two bifurcations

dBi The distance between the main probe tip and the i − th bifurcation-tube probe tip (we define the first subtube to be nearest
to the main probe tip)

Note: Only some common symbols are listed here; the rest are explained later
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Calculating the direction vector of the subtube
To find a line segment through M3 with a fixed angle
between the axis M1M2 and the center axis, let the inter-
section points between the line segment and the axis be
M31(x31, y31, z31); they should satisfy the following limits:

f M31M3
				! �M2M1

				!
j M31M3
				! j � j M2M1

				! j
¼

ffiffiffi
2

p

2
j M31M3
				! j¼j M3M1=2

					!

j x31 ¼ x1 þ
j M3M1=2
					! j þ j M1M1=2

					! j
j M1M2
				! j

x2−x1ð Þ

y31 ¼ y1 þ
j M3M1=2
					! j þ j M1M1=2

					! j
j M1M2
				! j

y2−y1ð Þ

z31 ¼ z1 þ
j M3M1=2
					! j þ j M1M1=2

					! j
j M1M2
				! j

z2−z1ð Þ

ð20Þ

We obtain M31M3
				! ¼ ðx3−x31; y3−y31; z3−z31Þ ¼ ðm1;

n1; k1Þ.
Because the angle between two subtubes and the angle

between the subtube and the main tube are fixed values,
we can calculate the other two direction vectors of the
subtubes based on the geometrical relationship.

B2
1

	! ¼ M31M1=2
					!þ 1

2
M3M4
				!

þ
ffiffiffi
3

p

2
M3M31
				!�M31M1=2

					!� �
¼ m2; n2; k2ð Þ ð21Þ

B3
1

	! ¼ M31M1=2
					!þ 1

2
M3M4
				!

þ
ffiffiffi
3

p

2
M1=2M31
					!�M31M3

				!� �
¼ m3; n3; k3ð Þ ð22Þ

The parametric equation of the three subtubes is as
follows.

f
x ¼ xBi þmjt
y ¼ yBi

þ njt
z ¼ zBi þ k jt

;where i ¼ 1; 2; 3; j ¼ 1; 2; 3 ð23Þ

There are three cases for the direction vector of each
subtube; let the coordinates of the subtube and the
boundary of the hematoma be B11, B12, B13; B21, B22,
B23; B31, B32, B33.

dBi ¼ max jB1B1ij þ jB2B2 jj þ jB3B3k j
� �

; f i; j; k ¼ 1; 2; 3
i≠ j≠k

ð24Þ

When we find the maximum value dBi , the coordinates
of the bifurcation subtube probe in hematoma can be

obtained as B1B1i
2 , B2B2 j

2 , and B3B3k
2 .

Fig. 4 Flow diagram of the bifurcation location algorithm of the
drainage tube
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Results and discussion
According to the CT data, the hematoma area was seg-
mented, and an independent three-dimensional diagram
was obtained, as shown in Fig. 5.
The STL format of a three-dimensional point

cloud is obtained by hematoma modeling. Figure 6
shows the three-dimensional point cloud diagram in
the hematoma area, and Fig. 7 shows the triangula-
tion diagram of this area [24].
In this case, the point cloud search arithmetic

method for modified adaptive weighted particle
swarm optimization to search the hematoma region
uses 81,226 point-chains. The coordinates of the
intersection between the central axis and the bound-
ary of the hematoma are M1(x1, y1, z1) and M2(x2, y2,
z2). The optimal external central axis of the
hematoma is shown in Fig. 8. The intersection
points of the central axis and the boundary of the
hematoma are M1(28.555, 9.623, 7.123) and
M2(43.384, 21.295, 48.887).
Therefore, the midpoint coordinates of the center

axis M1M2 are M1/2(35.970, 5.836, 28.010), and the
distance from M1 to M2 is d12 = ∣M1M2 ∣ ≈ 54.0377.
Figure 8 is optimal external central axis of the
hematoma.

The route planning for the puncture operation is as
follows:

Because
dB3−dB2

2 þ dB2 ¼ 35 < d12 ≈ 54:0377 , it is sug-
gested that doctors choose three subtube drainage tubes
when performing puncture operations. From the coor-
dinate of the center axis, the plane equation through
M3M4 can be obtained as

14:82919 x−35:969525ð Þ þ 30:91862
y−5:83595ð Þ þ 71:763726
z−28:009754ð Þ ¼ 0:

According to the point cloud search arithmetic
method for modified adaptive weighted particle
swarm optimization, we obtain the coordinates as
M3(26.201.451, 18.457) and M4(36.353, −7.797,
37.816), and the distance from M3 to M4 is d34 =
38.134751.
Through the above algorithm process, the coordi-

nates of the three bifurcation points can be
calculated

B1 35:18971256; 4:219077228; 25:81685749ð Þ;

B2 37:93409287; 9:939157835; 33:54479557ð Þ;

Fig. 5 Three-dimensional intracranial hematoma model

Fig. 6 The point cloud model
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B3 40:67847319; 15:65923845; 41:27273366ð Þ:
The three direction vectors of the subtube are as

follows:

M31M3
				! ¼ −0:296512566;−24:3104924;−4:838389244ð Þ;

B2
1

	! ¼ 3:125640267;−0:881458887;−10:79916805ð Þ;

B3
1

	! ¼ −6:200200368; −1:216682803;−3:497583415ð Þ:

There are three cases for the direction vector of each
subtube; let the coordinates of the subtube and the
boundary of the hematoma be B1, 1, B1, 2, B1, 3; B2, 1, B2,

2, B2, 3; B3, 1, B3, 2, B3, 3. The maximum value from the
bifurcation point to the boundary of the hematoma is

dBii ¼ max jB1B1;ij þ jB2B2; jj þ jB3B3;k j
� �

; f i; j; k ¼ 1; 2; 3
i≠ j≠k

:

The coordinates of the bifurcation probe to reach the
hematoma area are

B11 ¼ ð35:11854955;−1:615440948; 24:6556440Þ;

B22 ¼ ð39:80947703; 9:410282503; 27:0652947Þ;

B33 ¼ ð38:19839304; 15:17256533; 39:8737003Þ:

Figure 9 is a schematic diagram of the path planning
process.
In this study, 3D Slicer software was used to recon-

struct a three-dimensional model of an intracranial
hematoma, and an improved algorithm based on cluster-
ing and adaptive particle swarm optimization to extract
the optimal external central axis of the hematoma was
proposed. According to the characteristics of the drain-
age tube and the specific morphology of the intracranial
hematoma, optimal path planning under ideal conditions
was performed, and the preoperative simulation was
provided, which will be useful in clinical medicine.
The bifurcation localization algorithm of the drainage

tube proposed in this study assumes an ideal state. It is
necessary to consider the distribution of peripheral

Fig. 7 Schematic diagram of triangulation of the hematoma in STL format

Fig. 8 Optimal external central axis of the hematoma. a Two-dimensional projection; b Three-dimensional projection; and c The exact position
in skull
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nerves and blood vessels and the specific location of the
hematoma in the brain to apply this method to clinical
medicine. The focus of subsequent research work will be
to optimize the algorithm by considering the above
factors, to implement the diffusion model and simula-
tion of the drug injection, to plan the optimal surgical
project, and to provide a dynamic simulation before
operation.

Abbreviations
CT: Computerized tomography; ROI: Region of interest

Acknowledgments
Authors thank Tangshan Gongren Hospital for their support of original data.

Authors’ contributions
All authors read and approved the final manuscript. Conceptualization,
JChang, JCui, QP; methodology, QP and WZ; software, WZ and XZ; formal
analysis, QP; resources, JChang; data curation, JChang and JCui;
writing—original draft preparation, QP; writing—review and editing, QP;
visualization, QP and WZ; supervision, JChang and JCui; funding acquisition,
JChang.

Funding
This research was funded by the National Science Foundation of China, Nos.
51674121 and 61702184; the Returned Overseas Scholar Funding of Hebei
Province, No. C2015005014; the Hebei Key Laboratory of Science and
Application, and Tangshan Innovation Team Project, No. 18130209B.

Availability of data and materials
The datasets used and/or analysed during the current study are not publicly
available due to personal privacy but are available from the corresponding
author on reasonable request.
Supplementary Materials: The following are available online at www.mdpi.
com/xxx/s1, Figures, Tables .

Competing interests
The authors declare that they have no competing interests.

Received: 3 September 2019 Accepted: 4 December 2019

References
1. Fiorella D, Zuckerman SL, Khan IS, KumarN G, Mocco J (2015) Intracerebral

hemorrhage: a common and devastating disease in need of better

treatment. World Neurosurg 84(4):1136–1141. https://doi.org/10.1016/j.
wneu.2015.05.063

2. Qureshi AI, Tuhrim S, Broderick JP, Batjer H, Hondo H, Hanley DF (2001)
Spontaneous intracerebral hemorrhage. N Engl J Med 344(19):1450–1460.
https://doi.org/10.1056/NEJM200105103441907

3. Xiao FR, Chiang IJ, Wong JM, Tsai YH, Huang KC, Liao CC (2011) Automatic
measurement of midline shift on deformed brains using multiresolution
binary level set method and Hough transform. Comput Biol Med 41(9):756–
762. https://doi.org/10.1016/j.compbiomed.2011.06.011

4. Samadani U, Rohde V (2009) A review of stereotaxy and lysis for intracranial
hemorrhage. Neurosurg Rev 32(1):15–22. https://doi.org/10.1007/s10143-008-0175-z

5. Wang GQ, Li SQ, Huang YH, Zhang WW, Ruan WW, Qin JZ et al (2014) Can
minimally invasive puncture and drainage for hypertensive spontaneous
basal ganglia intracerebral hemorrhage improve patient outcome: a
prospective non-randomized comparative study. Mil Med Res 1:10. https://
doi.org/10.1186/2054-9369-1-10

6. Zhou HG, Zhang Y, Liu L, Han X, Tao YH, Tang YP et al (2011) A prospective
controlled study: minimally invasive stereotactic puncture therapy versus
conventional craniotomy in the treatment of acute intracerebral
hemorrhage. BMC Neurol 11:76. https://doi.org/10.1186/1471-2377-11-76

7. Delcourt C, Anderson C (2012) Acute intracerebral haemorrhage: grounds
for optimism in management. J Clin Neurosci 19(12):1622–1626

8. Backlund EO, von Holst H (1978) Controlled subtotal evacuation of
intracerebral haematomas by stereotactic technique. Surg Neurol 9(2):99–
101. https://doi.org/10.1016/j.jocn.2012.05.018

9. Yan YF, Ru DW, Du JR, Shen X, Wang ES, Yao HB (2015) The clinical efficacy
of neuronavigation-assisted minimally invasive operation on hypertensive
basal ganglia hemorrhage. Eur Rev Med Pharmacol Sci 19(14):2614–2620

10. Cao YF (2019) Introduction of 3D slicer. https://www.slicercn.com/?page_
id=485. Accessed 10 Apr 2019

11. Pinter C, Lasso A, Pieper S, Plesniak W, Kikinis R, Miller J (2019) Segment
editor. https://slicer.readthedocs.io/en/latest/user_guide/module_
segmenteditor.html. Accessed 10 Apr 2019

12. Zhang XL, Zhang KX, Pan QL, Chang JC (2019) Three-dimensional
reconstruction of medical images based on 3D slicer. J Complexity Health
Sci 2(1):1–12. https://doi.org/10.21595/chs.2019.20724

13. Pszczolkowski S, Law ZK, Gallagher RG, Meng DW, Swienton DJ, Morgan PS
et al (2019) Automated segmentation of haematoma and perihaematomal
oedema in MRI of acute spontaneous intracerebral haemorrhage. Comput
Biol Med 106:126–139. https://doi.org/10.1016/j.compbiomed 2019.01.022

14. Zhang J, Yan CH, Chui CK, Ong SH (2010) Fast segmentation of bone in CT
images using 3D adaptive thresholding. Comput Biol Med 40(2):231–236.
https://doi.org/10.1016/j.compbiomed.2009.11.020

15. Wagstaff K, Cardie C, Rogers S, Schrodl S (2001) Constrained k-means clustering
with background knowledge. In: Abstracts of the 18th international conference
on machine learning. Morgan Kanufman Press, San Francisco

16. Likas A, Vlassis N, Verbeek JJ (2003) The global k-means clustering
algorithm. Pattern Recogn 36(2):451–461. https://doi.org/10.1016/S0031-
3203(02)00060-2

Fig. 9 Route planning. M2 denotes the accurate position of the puncture point

Pan et al. Visual Computing for Industry, Biomedicine, and Art             (2020) 3:2 Page 10 of 11

http://www.mdpi.com/xxx/s1
http://www.mdpi.com/xxx/s1
https://doi.org/10.1016/j.wneu.2015.05.063
https://doi.org/10.1016/j.wneu.2015.05.063
https://doi.org/10.1056/NEJM200105103441907
https://doi.org/10.1016/j.compbiomed.2011.06.011
https://doi.org/10.1007/s10143-008-0175-z
https://doi.org/10.1186/2054-9369-1-10
https://doi.org/10.1186/2054-9369-1-10
https://doi.org/10.1186/1471-2377-11-76
https://doi.org/10.1016/j.jocn.2012.05.018
https://www.slicercn.com/?page_id=485
https://www.slicercn.com/?page_id=485
https://slicer.readthedocs.io/en/latest/user_guide/module_segmenteditor.html
https://slicer.readthedocs.io/en/latest/user_guide/module_segmenteditor.html
https://doi.org/10.21595/chs.2019.20724
https://doi.org/10.1016/j.compbiomed
https://doi.org/10.1016/j.compbiomed.2009.11.020
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2


17. Bai QH (2010) Analysis of particle swarm optimization algorithm. Computer
Inf Sci 3(1):180–184. https://doi.org/10.5539/cis.v3n1p180

18. Xing H, Pan XJ (2018) Application of improved particle swarm optimization
in system identification. In: Abstracts of 2018 Chinese control and decision
conference. IEEE, Shenyang. https://doi.org/10.1109/CCDC.2018.8407336

19. Su Q, Yang LH, Fu YG, Wu YJ, Gong XT (2014) Parameter training approach
based on variable particle swarm optimization for belief rule base. J
Comput Appl 34(8):2161–2165

20. Khong SZ, Nešić D, Manzie C, Tan Y (2013) Multidimensional global
extremum seeking via the DIRECT optimisation algorithm. Automatica 49(7):
1970–1978. https://doi.org/10.1016/j.automatica.2013.04.006

21. Cui JZ, Cui Y (2019) The multifunctional drainage tube with multi-tube for
intracranial hematoma. CN patent CN208405725U

22. Siddiqi K, Pizer SM (2008) Medial representations: mathematics, algorithms and
applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8658-8

23. Wang Y, Li J, Chen S (2011) A novel method of extracting 3D blood vessel
images axis based on energy constraint equation. J Comput Inf Syst 7(4):
1319–1327

24. Zhong YJ, Chen FL (2018) Computing medial axis transformations of 2D point
clouds. Graph Model 97:50–63. https://doi.org/10.1016/j.gmod.2018.03.004

25. Zhong YJ (2018) Computing medial axis transformations of the geometric
model. J Comput Aided Des Comput Graph 30(8):1394–1412. https://doi.
org/10.3724/SP.J.1089.2018.16790

26. Feng CS, Cong S, Feng XY (2007) A new adaptive inertia weight strategy in
particle swarm optimization. In: Abstracts of 2007 IEEE congress on
evolutionary computation. IEEE, Singapore, pp 25–28. https://doi.org/10.
1109/CEC.2007.4425017

27. Zhang LM, Tang YG, Hua CC, Guan XP (2015) A new particle swarm
optimization algorithm with adaptive inertia weight based on Bayesian
techniques. Appl Soft Comput 28:138–149. https://doi.org/10.1016/j.asoc.
2014.11.018

28. Li ZQ, Zheng H, Pei CM (2010) Particle swarm optimization algorithm based
on adaptive inertia weight. In: Abstracts of the 2010 2nd international
conference on signal processing systems. IEEE, Dalian, pp 5–7

29. Ao YC, Shi YB, Zhang W, Li YJ (2014) Improved particle swarm optimization
with adaptive inertia weight. J Univ Electron Sci Technol China 43(6):874–880

30. Li LS, Zhang XJ (2018) New chaos particle swarm optimization based on
adaptive inertia weight. Comput Eng Appl 54(9):139–144

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Pan et al. Visual Computing for Industry, Biomedicine, and Art             (2020) 3:2 Page 11 of 11

https://doi.org/10.5539/cis.v3n1p180
https://doi.org/10.1109/CCDC.2018.8407336
https://doi.org/10.1016/j.automatica.2013.04.006
https://doi.org/10.1007/978-1-4020-8658-8
https://doi.org/10.1016/j.gmod.2018.03.004
https://doi.org/10.3724/SP.J.1089.2018.16790
https://doi.org/10.3724/SP.J.1089.2018.16790
https://doi.org/10.1109/CEC.2007.4425017
https://doi.org/10.1109/CEC.2007.4425017
https://doi.org/10.1016/j.asoc.2014.11.018
https://doi.org/10.1016/j.asoc.2014.11.018

	Abstract
	Introduction
	Segmentation of the intracranial hematoma
	Hematoma modeling
	Hematoma location locking
	Applying the threshold method to segment the hematoma

	Methods
	Basic concept and definition
	Algorithm of optimal external central axis extraction
	Algorithm flow
	Optimal path planning
	The known conditions can be determined by M1 and M2
	Optimal path planning of two subtube drainage tubes
	Calculating the coordinates of B1 and B2
	Calculating the direction vector of the subtube

	The optimal path planning of three subtube drainage tubes
	Calculating the coordinate of B1, B2, and B3
	Calculating the direction vector of the subtube


	Results and discussion
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

