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Abstract

With the rapid development of deep learning technology, behavior recognition based on video streams has made
great progress in recent years. However, there are also some problems that must be solved: (1) In order to improve
behavior recognition performance, the models have tended to become deeper, wider, and more complex.
However, some new problems have been introduced also, such as that their real-time performance decreases; (2)
Some actions in existing datasets are so similar that they are difficult to distinguish. To solve these problems, the
ResNet34-3DRes18 model, which is a lightweight and efficient two-dimensional (2D) and three-dimensional (3D)
fused model, is constructed in this study. The model used 2D convolutional neural network (2DCNN) to obtain the
feature maps of input images and 3D convolutional neural network (3DCNN) to process the temporal relationships
between frames, which made the model not only make use of 3DCNN’s advantages on video temporal modeling
but reduced model complexity. Compared with state-of-the-art models, this method has shown excellent
performance at a faster speed. Furthermore, to distinguish between similar motions in the datasets, an attention
gate mechanism is added, and a Res34-SE-IM-Net attention recognition model is constructed. The Res34-SE-IM-Net
achieved 71.85%, 92.196%, and 36.5% top-1 accuracy (The predicting label obtained from model is the largest one
in the output probability vector. If the label is the same as the target label of the motion, the classification is
correct.) respectively on the test sets of the HMDB51, UCF101, and Something-Something v1 datasets.
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Introduction
Human behavior recognition based on video streams has
been widely used in security monitoring, human-
computer interaction, and automatic driving, etc. It has
attracted the attention of many scholars and research in-
stitutions. With the rapid development of deep learning
technology, many great achievements have been ob-
tained for behavior recognition tasks in recent years.
However, there are still problems that must be solved

for the behavior recognition task: There are many con-
fusing actions in the existing datasets, which affect the
performance of the models. In order to train efficient be-
havior recognition models, researchers have built many
video datasets, such as HMDB51 [1], UCF101 [2],

Kinetics [3], Something-Something v1 [4], etc. Some of
the actions in these datasets are easily confused with one
another, such as ‘flic-flac’ and ‘cartwheel’, ‘wave’ and
‘clap’, ‘fencing’ and ‘sword’, as shown in Fig. 1.
Considering the advantages of the two-dimensional

(2D) and three-dimensional (3D) fused model in prac-
tical application, we constructed a 2D and 3D fused
network, ResNet34-3DRes18, as our baseline model in
this study. The network was relatively lighter and
achieved results comparable with those of state-of-
the-art network. To make the model better able to
distinguish between confusing actions, an attention
mechanism was added to the basic ResNet34-3DRes18
model, creating a new model named Res34-SE-IM-
Net. This method could distinguish between confus-
ing motions effectively in the existing behavior recog-
nition datasets (in this study, HMDB51 was used as
an example), which thus improved the overall
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accuracy of the model to a certain extent. The
remaining sections of this paper are organized as fol-
lows. First, the related work about video behavior rec-
ognition is introduced in the second section. Then,
the behavior recognition models proposed in this
study are described in the third section. The perfor-
mances of our methods on different datasets are then
evaluated in the fourth section; Finally, the paper is
summarized in the fifth section.
The main contributions of this paper include the

following.

� We proposed an efficient 2D and 3D fused video
behavior recognition model which acquired good

performance on some challenging datasets and had
faster video processing speed (VPS).

� We proposed a video behavior recognition model
based on an attention mechanism, named Res34-SE-
IM-Net. This method can effectively distinguish be-
tween confusing actions and therefore improved
model performance.

Related work
Convolutional neural networks (CNNs) have gradually
replaced traditional behavior recognition methods which
are characterized by manual feature extractors. Methods
based on CNNs have become mainstream methods for
behavior recognition. Based on different convolutional

Fig. 1 Some actions easily confused with each other in datasets
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kernels, these methods can be divided into 2D CNNs,
3D CNNs and 2D and 3D fused networks.
With the great success of CNNs in the field of image

classification, the transfer CNNs from image classifica-
tion to behavior recognition has attracted considerable
attention from researchers. Simonyan and Zisserman [5]
proposed a two-stream network that consisted of a
spatial stream and a temporal stream. Of these, the
spatial stream was used to extract spatial features, and
the temporal stream learned the temporal relationships
between frames. Feichtenhofer et al. [6] improved the
two-stream network by fusing the two branches in the
convolutional layer instead of using late fusion. Wang
et al. [7] adopted a video segmentation sampling strategy
to obtain the input for the network, so that the two-
stream network could make full use of the information
in the entire video. Although these methods achieved
good results, they did not achieve good performance on
complex temporal modeling problems.
One straightforward and effective way to solve the

complex temporal modeling problem with videos is to
expand the 2D convolution kernel to a 3D convolution
kernel to build a 3D CNN network. Tran et al. [8] pro-
posed a C3D model, which demonstrated that a 3D
CNN is better at learning spatiotemporal features than a
2D CNN. Carreira and Zisserman [9] proposed a deeper
3D CNN named I3D, which achieved better results than
C3D on existing behavior recognition datasets. However,
3D CNNs usually have a complex structure, for example
the C3D network. This network had only 11 layers [10],
but its model size was much larger than the deeper 2D
CNN networks.
In order to reduce the complexity of models and en-

sure their performance, researchers have tried to con-
struct a behavior recognition model by fusing 2D CNNs
and 3D CNNs [11]. Zolfaghari et al. [12] constructed an
online action recognition model using a 2D and 3D

fused model. This type of network achieves an accuracy
comparable with the state-of-the-art networks at a faster
speed.

Methods
In this study, two behavior recognition models are pro-
posed, the ResNet34-3DRes18 network and the Res34-
SE-IM-Net model. We first introduce the basic structure
of the two models, and then elaborate on the specific de-
tails of the models.

ResNet34-3DRes18
A fused network with a 2D CNN and a 3D CNN, named
ResNet34-3DRes18, was first designed. Its architecture is
a typical top-heavy hybrid network [13] with both 2D
and 3D characteristics, as shown in Fig. 2. Specifically,
the spatial features of a single image are first extracted
by the 2D part of the CNN. The temporal relationships
between different frames are then learned by the 3D
CNN part. By processing this information jointly, we ob-
tain get the final action class label.
According to ref. [10], shallower networks cannot

achieve better results than the deeper networks. However,
deeper networks also have disadvantages, such as a large
number of parameters and greater requirements for hard-
ware configuration. Considering the performance and
complexity of the network, the modified ResNet34 [14]
network (until layer 4) was selected as the 2D CNN part
which obtains the spatial features of the input images. For
the 3D CNN part, the 3D-ResNet18 [15] network was
used. The specific details for the 2D CNN and 3D CNN
parts can be found in section 3.3.
The sparse sampling strategy used in ref. [12] was used

to obtain N sampling frames as the input to the
ResNet34 network. After processing by ResNet34 net-
work, each input image was converted to 512 feature
representation code maps. We named them as Feature

Fig. 2 A architecture of ResNet34-3DRes18 network. The N frames images are obtained by the sparse sampling strategy. Then these images are
processed by ResNet34 network to get their Feature map. The Feature map are stacked to obtain a temporal feature map, named Temporal FM.
The Temporal FM is processed by 3DRes18 network to get the final action recognition result
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maps. The size of each map is 7 × 7. This process can be
shown in Function (1).

F i ¼ f res34 f ið Þ ð1Þ

where Fi is a Feature map of the ith sampling frame, Fi ∈
R512 × 7 × 7; the fres34 function represents the ResNet34
network, and fi is the ith sampling frame of the input
video. Then, these Feature maps are stacked to obtain a
feature map with a temporal dimension named Tem-
poral FM, as shown in Function (2).

TFM ¼ f stack F1; F2; :::; Fnð Þ ð2Þ

where TFM is a temporal feature map, TFM ∈R512 ×N× 7 × 7;
the fstack is the stacking function for the feature maps;
n is the number of input frames. The TFM is then
sent to the 3DRes18 (3DCNN part) network for

processing, and the results of the action recognition
is finally obtained, as shown in Function (3).

class1; class2; :::; classN½ � ¼ softmax f 3D Res18 TFMð Þð Þ
ð3Þ

where classi is the probability value that an input video
belongs to the ith class; N is the total number of classes;
the ‘softmax’ represents the normalized function and the
f3D Re s18 is the 3D-Res18 network. The final action label
is the index class of classi, which has the max probability
value in the vector of [class1, class2, ..., classN].

Res34-SE-IM-net model
Although the ResNet34-3DRes18 model takes full ad-
vantage of the 2D and 3D fused model, it is unable to
distinguish between confusing motions. Because the
model cannot distinguish the importance of different

Fig. 3 A architecture of Res34-SE-IM-Net network

Fig. 4 SE Module. (a) BasicBlock; (b) SE Module; (c) SE-IM-BasicBlock
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feature channels effectively, the method cannot focus on
better distinguishinge information for a action. The
squeeze-and-excitation network [16] (SE Module) can
explicitly model different feature channels, suppress use-
less feature channels, and enhance useful feature chan-
nels. Therefore, the SE Module can make model pay
more attention to the feature channel which is more
distinguished for the action recognition. Moreover, the
module consumes only small amount of computation
and basically not increase the complexity of models
when modeling the feature channel. At the same time,
the attention unit can be easily embedded into existing
networks. Therefore, an SE Module and identity map-
ping [14] were introduced into the ResNet34-3DRes18
network, creating a new model that was named Res34-
SE-IM-Net. This method is better able to distinguish be-
tween confusing actions than is the ResNet34-3DRes18
model. The architecture of the Res34-SE-IM-Net model
is shown in Fig. 3. A video is first split into N frames im-
ages. And then these images are processed by the Res34-
SE-IM network which consists of 16 SE-IM-BasicBlock,
to get the feature maps of the images. Finally, these fea-
ture maps are stacking and then fed into 3DRes18 net-
work to process. After this, the final action recognition
results can be obtained.
The residual unit in ResNet, named BasicBlock, is

shown in Fig. 4 (a). It can be seen from ref. [16] that the
squeeze-and-excitation network is easily embedded into
existing networks and achieves better results than the
original network, as shown in Fig. 4 (b). Therefore, after

the SE module is added, the model can focus more on
the most distinguishing information for different actions.
A residual attention unit, named SE-IM-BasicBlock, was
constructed, as shown in Fig. 4 (c). This unit was easily
embedded in the ResNet34 network, replacing the ori-
ginal residual block in the residual network, as shown in
Function (4).

X� ¼ X þ f resdiual Xð Þ þ f SE f resdiual Xð Þð Þ½ � ð4Þ
where X is the raw input of the network; X~ is the out-
put of the SE-IM-BasicBlock; the fresdiual function is the
residual unit; the fSE function is the SE Module.

Details of network
ResNet34 network
For the 2D CNN part, the ResNet34network (up to layer
4) is used in this study. The network consisted of convo-
lutional layers and pooling layers, as shown in Table 1.
Of these, Layer1, Layer2, Layer3, and Layer4 represent
different stages, which consist of different residual units.
The residual units have different number of output
channels, such as 64, 128, 256, and 512. Each residual
unit (BasicBlock) consists of two 3 × 3 2D convolutions.
After each input image is processed by the network, the
image is converted to 512 feature representation code
maps with a size of 7 × 7.

3DRes18 network
For the 3D CNN part, the modified 3DResNet18 net-
work was used to model the temporal relationships

Table 1 Network architecture of ResNet34 and 3D Res18

ResNet34 3D Res18

Layer name Output size The architecture of ResNet34 Layer name Output size The architecture of 3D Res18

Conv1 112 × 112 [2D conv7 × 7 64] Conv1 7 × 7 × 128 {3Dconv3 × 3 × 3128
3Dconv3 × 3 × 3128} × 2

pool 56 × 56 [max pool 3 × 3] Conv2 7 × 7 × 256 {3Dconv3 × 3 × 3256
3Dconv3 × 3 × 3256} × 2

Layer1 56 × 56 {2D conv3 × 3 64
2D conv3 × 3 64} × 3

Conv3 7 × 7 × 512 {3Dconv3 × 3 × 3512
3Dconv3 × 3 × 3512} × 2

Layer2 28 × 28 {2D conv3 × 3128
2D conv3 × 3128} × 4

Pooling 1 × 1 × 512 [Avgpool3D 1 × 7 × 7]

Layer3 14 × 14 {2D conv3 × 3256
2D conv3 × 3256} × 6

Dropout 1 × 8192 Dropout (p = 0.5)

Layer4 7 × 7 {2D conv3 × 3512
2D conv3 × 3512} × 3

– 1 × classes FC, softmax

Table 2 Details of HMDB51, UCF101 and Something-Something
v1 datasets

Dataset name Classes Total clips Clips/class

HMDB51 51 6766 102 (min)

UCF101 101 13,320 101 (min)

Something-Something v1 174 108,499 77–986

Table 3 The critical hyper-parameters of the experiment

Num-segments (N) 16 Dropout 0.5

Batch-size 16 clip-gradient 50

Lr 0.001 Momentum 0.9

Weight-decay 5e-4 Num-saturate 5
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between different frames, as shown in Table 1. The net-
work consists of convolutional layers, average pooling
layers (Avgpool), a dropout layer, and a fully connected
(FC) layer. In the convolutional layers, the convolutional
kernel size is 3 × 3 × 3. These convolutional layers have
different number of output channels, which are 128,
256, and 512. To reduce the risk of model over-fitting, a
dropout layer of p = 0.5 is used. For the FC, the ‘classes’
represent the number of motion classes in the datasets.

Results
First, the datasets and details of the experiment are in-
troduced. Our methods are then evaluated on different
action recognition datasets, which include the HMDB51,
UCF101, and Something-Something v1 datasets. Com-
pared with state-of-the-art methods, our methods
showed better performance. At the same time, our
methods required fewer parameters and showed higher
processing speed, which makes them easy to deploy in
practical applications. In addition, our approaches were
also evaluated for the online classification task.

Datasets and details of experiment
Our methods were evaluated on three different datasets,
including the HMDB51, UCF101, and Something-
Something v1 datasets. Of these, the HMDB51 and
UCF101 are two popular datasets in the behavior recogni-
tion field that are usually used as standards for algorithm
evaluation. The Something-Something v1 is a new, large
human action dataset, that contains more than 100,000
motion clips and relies heavily on a temporal context.
Thus, it is a challenging new dataset for behavior recogni-
tion. The details of these datasets are shown in Table 2.
In the input part, the videos in the datasets were split

into single frame images using the OpenCV library.
After that, each video was divided into N segments of
equal length, and one frame image was randomly se-
lected from each segment as the input to the ResNet34
network. For the input images, data augmentation tech-
niques, such as the fixed-corner cropping and scale jit-
tering in ref. [12], were also applied to reduce the risk of
model over-fitting.
The models were first pre-trained on the Kinetics

database and then fine-tuned on the HMDB51, UCF101,

Table 4 Comparison of recognition accuracy with state-of-the-art methods on HMDB51 and UCF101 datasets

Methods Input modality Pre_training HMDB51 (%) UCF101 (%)

HOG/HOF [1] RGB – 20.44 –

IDT [17] RGB – 57.2 85.9

MIFS [18] RGB – 65.1 89.1

ECO-Lite (16 frames) [12] RGB Kinetics 68.2 91.6

ECO (16 frames) [12] RGB Kinetics 68.5 92.8

ResNext-101 [19] RGB Kinetics 63.8 90.7

Res3D [15] RGB Sports-1 M 54.9 85.8

I3D [9] RGB Kinetics 74.5 95.4

ResNet101 [19] RGB Kinetics 61.7 88.9

DTTP (split 1) [20] RGB ImageNet 61.5 89.7

RSN [21] RGB – 55.9 87.5

Two-stream (fusion by SVM) [5] RGB, Optical flow ILSVRC 59.4 88.0

VGG16 + TSN [22] RGB,Optical flow ImageNet 67.3 92.1

ResNet34-3DRes18 (16 frames) RGB Kinetics 70.997 92.143

Res34-SE-IM-Net (16 frames) RGB Kinetics 71.85 92.196

Table 5 Comparison of recognition accuracy with state-of-the-art methods on Something-Something v1 dataset

Methods Input modality Pre_training Top-1 val (%) TOP-1test (%)

TSN by ref. [23] (7 frames) RGB ImageNet 18.48 –

MultiScale TRN [23] RGB ImageNet 34.44 33.6

ECO (16 frames) [12] RGB ImageNet 41.4 –

TRN (ResNet-50) by ref. [13] (8frames) RGB ImageNet 38.9 –

ResNet34-3DRes18 (16 frames) RGB Kinetics 41.012 –

Res34-SE-IM-Net (16 frames) RGB Kinetics 41.398 36.5
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and Something-Something v1 datasets. The hyper-
parameters for the experiment are shown in Table 3.
Sixteen frames of images (Num-segments = 16) in a
video were chose as the input of our models. Batch-size
represents the number of samples for training once.
During the training, the initial learning rate (Lr) of the
network was set to 0.001. When the accuracy of top-1
on the validation reached saturation for 5 consecutive
epochs (Num-saturate = 5), the Lr automatically de-
creased by a factor of 10. In order to avoid gradient ex-
plosion during training, a gradient threshold (clip-
gradient = 50) was set. In our model, the Stochastic Gra-
dient Descent optimizer with Momentum decay (helping
accelerate gradient update) and Weight-decay (a meas-
ure of reducing over-fitting) was used. At the same time,
a dropout layer (Dropout = 0.5) was applied before the
FC in order to prevent the model from over-fitting.

Comparison to state-of-the-art methods on different
datasets
To evaluate the performance of our methods, we com-
pared them with state-of-the-art methods, as shown in
Tables 4 and 5. On the HMDB51 and UCF101 datasets,
our approaches are compared with the traditional
methods (in the first row), the deep learning methods
using RGB as input (in the second row), and the deep
learning methods using multimodal input (in the third
row), as shown in Table 4. On the HMDB51 and
UCF101 datasets, all our methods achieved better per-
formance except for I3D, which used a deeper network.
Our methods also attained better performance on the
Something-Something v1 dataset, even though this

dataset is more complicated and depends heavily on
temporal relationships.

Complexity and accuracy comparison
In order to demonstrate our methods (ResNet34-
3DRes18 and Res34-SE-IM-Net) lighter and more effect-
ive than other approaches, some relational indicators
that evaluate the complexity and accuracy of models are
listed in Table 6. The number of floating point opera-
tions (FLOPs) represents the number of floating-point
operations, which can precisely measure the complexity
of models; The models’ parameters (Param) indicate the
number of model parameters, such as weight and bias;
The number of model’s layers (Depth) denotes the num-
ber of model layers which not include the ‘BN’ layers;
‘VPS’ represents the number of videos processed per sec-
ond. We can see clearly from Table 6 that our methods
acquire better performance at the expense of a shallower
network, lower FLOPs, and higher VPS, except I3D. I3D
has a lesser number of parameters because it uses many
smaller convolutional kernels, such as 1 × 1 × 1. How-
ever, it has a larger FLOPs and a lower VPS, which
makes the method difficult to employ in the practical
applications. The depth of Res34-SE-IM-Net does not
include the two linear layers in the SE Module, because
the linear layers have fewer parameters.

ResNet34-3DRes18 and Res34-SE-IM-net
ResNet34-3DRes18 and Res34-SE-IM-Net were respect-
ively evaluated on the test set of HMDB51 and UCF101,
and the validation set of Something-Something v1, as
shown in Table 7. It can be seen that Res34-SE-IM-Net

Table 6 Comparison of the complexity and accuracy between our methods and state-of-the-art methods on the HMDB51 and
UCF101 datasets

Methods FLOPs Param Depth VPS HMDB51 (%) UCF101 (%)

I3D(RGB) [9] 139.39G 12.7 M 72 0.5 74.5 95.4

ResNext-101 [19] 192.31G 60.63 M 101 – 63.8 90.7

ResNet-101 [19] 277.23G 86.92 M 101 – 61.7 88.9

ResNet34-3DRes18 (16 frames) 85.57G 55.78 M 48 20.2 70.997 92.143

Res34-SE-IM-Net (16 frames) 85.6G 60.2 M 48 18.8 71.85 92.196

Table 7 Comparison of recognition accuracy between ResNet34-3DRes18 and Res34-SE-IM-Net on HMDB51, UCF101 and
Something-Something v1 datasets

Dataset Methods Top-1 (%) Top-5 (%)

HMDB51(test set) ResNet34-3DRes18 70.997 90.748

Res34-SE-IM-Net 71.85 (+ 0.853) 91.535 (+ 0.787)

UCF101(test set) ResNet34-3DRes18 92.143 99.392

Res34-SE-IM-Net 92.196 (+ 0.053) 98.862

Something-Something
v1(validation set)

ResNet34-3DRes18 41.012 72.139

Res34-SE-IM-Net 41.398 (+ 0.386) 72.743 (+ 0.604)
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achieved better performance on the three datasets, than
did ResNet34-3DRes18.This fully proves the effective-
ness of introducing the SE module and identity mapping
in the basic ResNet34-3DRes18. Furthermore, compared
with ResNet34-3DRes18, the FLOPs and Param of
Res34-SE-IM-Net model were increased very little,
which was compensated for its superior performance, as
shown in Table 6.
To further demonstrate the advantages of Res34-SE-IM-

Net in distinguishing confusing motions, we introduce a

confusion indicator [24] to evaluate its performance. Con-
fusion refers to the sum of the probability that two differ-
ent motions will be misidentified as the other. Owing to
the better performance of our methods on the HMDB51
dataset, we chose to use it as an example to illustrate the
problem. The confusion of some actions on our methods
are compared, as shown in Table 8. The two kinds of
movements enclosed in parentheses are easily confused
movements such as “(flic-flac, cartwheel)”, and the values
below it indicate the confusion between them. We can see
clearly that the Res34-SE-IM-Net model acieved lower
confusion for most of the confusing actions than did the
ResNet34-3DRes18 model. This fully demonstrated that
the Res34-SE-IM-Net was better able to distinguish be-
tween confusing actions than was ResNet34-3DRes18.

Online recognition
To verify the performance of our method in practical ap-
plication, we used the Res34-SE-IM-Net model in an on-
line action recognition task. The input of the network
was obtained using a GUCEE HD98 digital camera. After
capturing the input videos, the input of the Res34-SE-

Table 8 Comparison of the confusion between ResNet34-
3DRes18 and Res34-SE-IM-Net

Confusing actions ResNet34-3DRes18
(16frames)

Res34-SE-IM-Net (16
frames)

(flic-flac, cartwheel) 43% 30% (−13%)

(wave, clap) 32% 11% (−21%)

(laugh, smile) 37% 16% (−21%)

(fencing, sword) 40% 37% (−3%)

(cartwheel,
handstand)

26% 24% (−2%)

Fig. 5 Results of online recognition of the Res34-SE-IM-Net network
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IM-Net model was obtained using the online sampling
strategy in ref. [12]. The input was then sent to the
model to obtain real-time action recognition results. The
results for the online recognition of the Res34-SE-IM-
Net model are shown in Fig. 5. Each line represents the
recognition result of one class of motion. The text to the
left of the images indicates the true categories of the in-
put actions, while the black text on the images indicates
the predicted categories of these actions. As can be seen
from the figure, the Res34-SE-IM-Net model can accur-
ately distinguish between confusing motions (such as
‘drink’ and ‘eat’) under real-time conditions, and obtains
good results in real-world applications.

Conclusions
In this study, we proposed an improved 2D and 3D fused
video behavior recognition model named ResNet34-
3DRes18. The model is composed of 2DCNN part
(ResNet34) and 3DCNN part (3DRes18). This method
attained better performance with higher speed than state-
of-the-art methods. Furthermore, in order to strengthen
the ability of the model to distinguish between easily con-
fused motions, the SE Module and identity mapping are
introduced into the ResNet34-3DRes18 network, con-
structing the Res34-SE-IM-Net network. The model
achieved better performance on the HMDB51, UCF101,
and Something-Something v1 datasets, than did the
ResNet34-3DRes18 network. Our method showed better
results on the online action classification task.
Although the Res34-SE-IM-Net network can distin-

guish some confusing motions to some extent, the
model can’t effectively model the complex temporal mo-
tions such as some actions in Something-Something v1
dataset. Therefore, in our future work, we will consider
designing some temporal attention modules and adding
them to the model to increase the model’s discrimin-
ation of different frames in a video.
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