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Software development for modeling
irregular fine protrusions formed by sputter
etching
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Abstract

Irregular fine protrusions formed on the surface of a mechanical part through biomimetic technology can
enhance the part’s properties, including tribology, self-cleaning, and light absorption. However, underlying
principles for the formation of fine protrusions according to the requirements of their shapes, sizes, and
material distributions have not been studied sufficiently. This paper presents the software development for
modeling irregular fine protrusions, which is essential for the simulation, experimentation, and analysis of fine
protrusions formed by sputter etching.
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Introduction
Biomimetics has resulted in new technologies inspired
by biological solutions at the macro- and nano-scales
found in nature, such as self-healing abilities, environ-
mental exposure tolerance and resistance, hydrophobi-
city, self-assembly, and solar energy utilization [1]. An
interesting example is the “lotus effect,” [2] as shown in
Fig. 1. This refers to self-cleaning properties arising from
ultrahydrophobicity, as exhibited by the leaves of
nelumbo or lotus. Dirt particles are gathered by water
droplets owing to the fine protrusions on the lotus leaf,
as shown in Fig. 2, which minimizes droplet adhesion to
the leaf. Superhydrophobicity has been adopted in many
industrial products to prevent the drenching of cloth,
paint, or concrete, as well as to deter the accumulation
of rain, snow, ice, contamination, or corrosion.

Fine protrusions on a part can be fabricated using
various methods, including [3]: (1) plasma etching
using a mask prepared by lithography, depositing
seed materials on a substrate, or direct sputter
etching without using masks; (2) chemical vapor
deposition to form carbon nanotubes; (3) embedding
polymers into pores of anodic alumina as a tem-
plate, followed by extruding it to form nanofibers,
which are then plated to form silver nanowires and
gold nanorods; (4) forming nanostructures through
plating and electrochemical reaction; (5) coating of
nanoparticles. However, complex processes are
adopted in all these methods, which is not cost
effective. Moreover, in some cases the strength and
heat resistance of the protrusions are insufficient for
industrial applications.
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The authors discovered that fine cone-shaped
protrusions can be formed on surfaces of stainless
steels, low alloyed steels, or tool steels through
argon ion sputter etching [4–11], a simpler and
more cost effective process comparing with the
above- mentioned methods. Figure 3 shows the for-
mulation process of conical protrusions through
argon ion sputter etching. The origin of the protru-
sion is a carbide formed on the surface. It grows to
a certain size when sputter etching accelerates the
diffusion of carbide-forming elements, Cr and C,
from the interior of the specimen to the surface. As
shown in Fig. 4, the sizes of the protrusions formed
varied from 0.1 to 5 μm in diameter or width and
the height/diameter ratio exceeded 1.5.
The protrusions exhibited excellent mechanical

properties with only a small decrease in pitting
corrosion resistance. They can be used as dies to
form fine holes on a polymer film to reduce light
reflections. Furthermore, they can enhance the
adhesion of printing ink on a paper or cloth and
improve the bonding between a transportation roll

and the paper and cloth that it carries. Further, the
large surface area of protrusions can be utilized as
catalysts or supports of catalytic species, and the
sharp tips of the protrusions can be utilized for the
design of a cold emitter, temperature sensor, or
heat sink of a micromachine.
However, the underlying principles for the formation

of fine protrusions of various shapes, sizes, and distribu-
tions have not been studied sufficiently. Hence, we con-
ducted a study to investigate the tribological properties
of irregular fine protrusions. The steps performed in the
study are shown in Fig. 5. First, the irregular fine protru-
sions were formed on the surface of several specimens
(metals and alloys) through sputter etching using argon
or xenon plasma. Next, geometry models of the fine pro-
trusions were created, and the tribological properties of
the specimen when lubricant oil was applied on it were
simulated and analyzed using the moving particle semi-
implicit method (MPS) [12] with support from the Parti-
cleWorks software package. The simulation and analysis
results were then compared with the results obtained
from the tribological experiments on the specimen. The
comparison result was then used to modify the MPS
model. This paper presents the software development
for modeling irregular fine protrusions, an essential
component of the study.

Methods
In this study, the geometric models of fine protru-
sions, in the form of a Hermite bicubic surface patch
(Sij at the i-th row and j-th column) derived from
horizontal squares, are mathematically described by
the following Hermite Eq. (1) of two parameters u, v
(0 ≤ u ≤ 1, 0 ≤ v ≤ 1) [13, 14]. As shown in Fig. 6, a
curved

Fig. 2 Computer graphics of a lotus leaf surface [2]

Table 1 Menu

(1) File: consists of submenus “Create model”, “Open model”, “Save”
and “Exit”.

(2) Select: consists of submenus “Select all vertexes”, “Select all squares”,
“Select all patches” and “Select vertexes of specified patches”.

(3) Lock/Unlock: consists of submenus “Fix vertexes/squares/patches”
and “Release vertexes/squares/patches”.

(4) Setup/Option: consists of submenus “Set scale”, “Random variation”,
“Auto-save on/off”, “Visible range”, “Set moving speed”, “Hide patches”,
“Show all patches”.

(5) Undo/Redo: consists of submenus “Go back” and “Recover”.

(6) Show/Check: consists of submenus “Vertex information” and “Error
check”.

(7) Texture Mapping: consists of submenus “Map texture” and “Edit
texture”.

(8) Window: consists of submenus “Projection mode” and “Clean”.

(9) Help: show information of the software.

Fig. 1 Water on the surface of a lotus leaf [2]
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Table 2 Toolbar
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surface patch is defined by 16 boundary conditions, in-
cluding the four corner position vertexes (Qij, Qi(j+1),
Q(i+1)j, Q(i+1)(j+1)), eight tangent vectors ( Q̇v

ij , Q̇v
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corner points (two at each point in the u and v direc-

tions), and four twist vectors ( €Q
uv
ij , €Q

uv
i ð jþ1Þ , €Q

uv
ðiþ1Þ j ,

€Q
uv
ðiþ1Þð jþ1Þ) at the corner points. The tangent vector at

a corner point can be approximated by the direction
and length of chord lines joining the neighboring cor-
ner points. Hence, the tangent vector information
need not be input, and the calculation of the surface
parameters is simplified. The software was developed
with Visual C++ [15] and OpenGL [16, 17].

Results
Figure 7 shows the user interface of the developed soft-
ware. Tables 1 and 2 show the menu and toolbar.

Input and check boxes
The input and check boxes at the bottom of Fig. 7 are il-
lustrated in the same figure.

Implementation
The software was implemented in the following steps.
First, horizontal squares were defined (Fig. 8). Next, each
vertex was raised to a height to create four patches
around it by computing their coordinates according to
Eq. (1) to create a protrusion, and the tangent vector
was shortened/extended/rotated to change the shapes of
the patches with both position and tangent continuities
(Fig. 9). Multiple vertexes can be raised to form protru-
sions with random heights effectively (Figs. 10 and 11).
Furthermore, multiple vertexes can be raised to create

Fig. 3 Formation mechanism of fine protrusions by sputter etching

Fig. 4 Fine protrusions formed by argon ion sputter etching
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Fig. 6 Parameters of a Hermite bicubic surface patch [13]

Fig. 7 The user interface of the developed software

Fig. 5 Process of investigating tribological properties of irregular fine protrusions
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Fig. 8 The defined squares

Fig. 9 Variations in patches by changing the tangent vector length
and direction. a Raising a vertex; b Shortening a vector; c Extending
a vector; d Rotating a vector

Fig. 10 Parameters of a random shape

Fig. 11 A random shape

Fig. 12 Law for a weighted shape
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protrusions with different heights according to the law
of weights (Figs. 12 and 13). These operations were per-
formed using a computer mouse. A test model of the
cone-shaped protrusions is shown in Fig. 14. After dis-
cretizing the protrusion surfaces according to Eq. (1),
the discretized points were converted into a triangular-
faced mesh to create a stereolithograph (STL) file.
This software package has been used to develop a

computer simulation program for the design of a nonslip
and nondestructive medical plier. As shown in Fig. 15,
the working surface of the plier comprises two convex
sections, in which one was produced by a high-precision
machine tool in millimeters and the other was generated
by sputter etching in nanometers. The second section is
small and can increase friction force without damaging
human body tissues. Figure 16 shows the computational
simulation using the MPS software package Particle-
Works. The pressure and friction force distribution be-
tween the plier and object to be held can be observed
and used to strategically assist the shape design of the
two sections of the plier.

Conclusions
A software for modeling irregular fine protrusions
was developed to simulate and analyze the properties
of fine protrusions formed by sputter etching. A
Hermite bicubic surface was adopted in this soft-
ware, although other representations such as the
Bezier and B-spline surfaces can be used for free-
form surfaces, and fractals can be used for some nat-
ural shapes. This was because each Hermite bicubic
patch was defined with geometric conditions of four
vertexes, which rendered it easy to describe local
variations of a shape. By contrast, each Bezier sur-
face or B-spline surface was defined with 16 ver-
texes, which was suitable for defining large smooth
surfaces but not ideal for modeling irregular fine

Fig. 13 A weighted shape

Fig. 14 A test model of cone-shaped protrusions

Fig. 15 Two convex sections

Fig. 16 Computational simulation for developing the medical plier.
a Model of the plier; b MPS simulation
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protrusions. Because the statistical character of each
fine protrusion differed from that of the entire sur-
face, fractals were not applicable.
Using this software, fine protrusions in various

shapes, such as cone, ring, sphere, and pipe can be
created. The maximum number of modeled fine
protrusions was approximately 106, which was suffi-
cient for the MPS analysis and simulation. A protru-
sion can be created rapidly by clicking on a
computer mouse. Large-scale of protrusions can be
created effectively with the random height method.
The STL data of the created protrusions can be in-
put to and processed by the MPS software package
ParticleWorks. Furthermore, the software developed
is applicable to geographic information systems. Its
open structure allows the functions to be enhanced
to improve the efficiency and accuracy of modelling.
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MPS: Moving particle semi-implicit; STL: Stereolithograph
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