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Abstract

Image reconstruction for list-mode time-of-flight (TOF) positron emission tomography (PET) can be achieved by
analytic algorithms. The backprojection filtering (BPF) algorithm is an efficient algorithm for this task. The
conventional noise control method for analytic image reconstruction is the use of a stationary lowpass filter, which
does not model the Poisson noise properly. This study proposes a nonstationary filter for Poisson noise control. The
filter is implemented in the spatial domain in a form similar to convolution.

Keywords: Positron emission tomography, Time-of-flight, Analytic reconstruction, Noise control, Nonstationary filter

Introduction
Analytic image reconstruction methods for list-mode
time-of-flight (TOF) positron emission tomography (PET)
have been developed over the years [1–4]. One of the ad-
vantages of using TOF technology is its ability to reduce
the image noise. If an iterative algorithm is used to recon-
struct the image, the Poisson noise model is readily imple-
mented as a weighting function for the projections [2]. For
analytic reconstruction, the conventional noise control
method is the application of a lowpass filter [5]. A lowpass
filter is normally shift-invariant and can be implemented
as convolution in the spatial domain or as multiplication
in the Fourier domain [6]. The conventional lowpass fil-
ters thus are unable to model the Poisson noise accurately,
because Poisson noise in an image is not stationary.
The goal of this study is to develop a nonstationary

(i.e., shift variant) filter for Poisson noise control in ana-
lytic TOF PET image reconstruction. The filter can be
two-dimensional (2D) or three-dimensional (3D). The fil-
ter developed in this study is specially targeted towards
the backprojection filtering (BPF) algorithm used for TOF
PET reconstruction [3, 4]. In the BPF algorithm, each

event is first backprojected into the image domain. This
backprojection can add a value only to one point in the
image domain or add a one-dimensional (1D) Gaussian
function along the line-of-response (LOR), where the
point or the peak of the 1D Gaussian is at the location de-
termined by the TOF information.
It is understood that the TOF information is not ac-

curate and has some uncertainty. This uncertainty can
be modeled as a 1D Gaussian function with a standard
deviation of σ1. The TOF backprojection puts a different
1D Gaussian function along the LOR, and this backpro-
jection Gaussian function can be characterized by its
standard deviation σ2. As pointed out in refs. [3, 4], σ2
and σ1 are independent, and the user has freedom to
choose σ2. The combined effect of σ1 and σ2 will be
inverted by the tomographic filter, which depends on
the sum of σ1 + σ2. Using today’s typical TOF uncer-
tainty value, the tomographic filter can be approximated
by a ramp filter (also known as the ρ filter).
Let σ2 = 0, which means that the TOF backprojector

adds each event to a point in the image domain. The lo-
cation of the point may not be the true location where
the positron/electron annihilation happens due to the
TOF information uncertainty. Clearly, the TOF backpro-
jected image contains the accumulation of the photon
counts at each pixel, and the noise follows the Poisson
distribution. This is also true for σ2 > 0. The mean value
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and the variance are the same for a Poisson distributed
random variable.
Methods Section develops a nonstationary filter for

the Poisson noise. Some 2D computer simulations are
presented in Results Section. The following is Discus-
sion Section, and Conclusions Section concludes the
study. The Matlab® code for the proposed filter is pre-
sented in the Appendix.

Methods
This section develops a nonstationary filter for the 2D
case. The 3D case is similar and can be readily obtained
without any difficulties. Let f be the unfiltered image and
h be the filter kernel. The conventional linear shift-
invariant filter can be expressed as a convolution integral

g x; yð Þ ¼ ∬h x−u; y−vð Þ f u; vð Þ dudv ð1Þ

where g(x, y) is the filtered image. In Eq. (1), the kernel h
is shift-invariant. In other words, the shift-invariant filter
blurs the image f with the same kernel h everywhere. If
the kernel h varies from location to location, Eq. (1) can
be modified to

g x; yð Þ ¼ ∬h u; v; x; yð Þ f u; vð Þ dudv ð2Þ

Equation (2) is no longer a convolution. The calculation
complexity of Eq. (2) is almost the same as the complexity
of Eq. (1), except that in Eq. (2) the kernel h must be eval-
uated differently for different locations (x, y).
In this study, we assume the filter kernel h to be a 2D

Gaussian function with a standard deviation σ(x, y). This
2D Gaussian filter with σ (x, y) is different form the 1D
TOF uncertainty Gaussian function with σ1 and is also
different from the 1D TOF backprojection Gaussian
function with σ2.
Let us further assume that f is a TOF backprojected

image using σ2 = 0. The image f contains Poisson noise.
Each pixel of f is treated as a Poisson distributed random
variable, and hence the variance of a pixel in f is the
mean value of the pixel. In practice, the mean value of
each pixel of f is unknown, because we only have one
noise realization. We thus assume that the mean value is
the one realization of the image intensity of f.
Our strategy is to use a large kernel size of h if the

corresponding f value is large and a small kernel size if
the corresponding f value is small. The kernel size σ (x,
y) is thus a monotonic function of the image pixel f (x,
y). In this study, we empirically propose

σ x; yð Þ ¼ a� f x; yð Þb þ c ð3Þ

where σ (x, y) is the standard deviation value for the
multidimensional Gaussian kernel h at pixel (x, y). In Eq.
(3), a, b and c are user-selected parameters.

As a special case of a = 0, h has a constant σ (x, y), the
filter is shift invariant, and Eq. (2) reduces to Eq. (1).

Results
Computer simulations were carried out using the Shepp-
Logan phantom [7]. The image size was 256 × 256. This
Shepp-Logan image was assumed to be the TOF back-
projected image. Poisson noise was incorporated into
the image. The original noisy image was shown in Fig. 1.
Two filtered images are shown in Figs. 2 and 3, respect-
ively. In Fig. 2, a shift-invariant filter was used with a = 0
and c = 0.73, where c = 0.73 was the optimal value in
terms of the root-mean-square-error (RMSE) when a
was set to 0. In Fig. 3, a nonstationary filter was used
with a = 0.175, b = 0.01, and c = 0.6.
The RMSE was calculated for each of these 3 images

compared to the true image. The RMSE’s for Figs. 1, 2
and 3 are 1.0759, 0.6093, and 0.6010, respectively. The
RMSE has been reduced by switching the stationary fil-
ter to the nonstationary filter.

Discussion
A unique feature of the proposed denoising algorithm is
its non-stationarity. The non-stationary noise exists in
PET and in other imaging modalities. Similar to PET,
the noise in single photon emission computed tomog-
raphy (CT) also contains Poisson noise [8]. In x-ray CT,
the line-integral data is the logarithm of the Poisson
noise corrupted transmission measurements, and the
noise variance is spatially varying. Its noise variance can
be approximated by an exponential function of the mea-
surements [8]. Speckling noise in medical ultrasound

Fig. 1 The original noisy image, where the Shepp-Logan phantom is
corrupted by the Poisson noise. The RMSE is 1.0759
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images is nonstationary with a multiplicative noise
model [9]. The denoising algorithm developed in this
study can be readily modified to these applications. Of
course, if the image noise is additive and stationary,
there is no need to use the proposed algorithm. A com-
mon bandpass filter or lowpass filter may be sufficient
for the denoising purpose. The stationary filters are
much faster than the algorithm developed in this study.
An example of such an imaging modality is photoacous-
tic imaging [10–12], which has an additive noise model

and the noise variance is approximately stationary. Other
advantages of photoacoustic imaging are that it does not
use ionizing radiations and it has very high spatial
resolution.
Nowadays deep learning is the most active research

area, and much work has been reported in PET denois-
ing [13–19]. Deep learning denoising is effective and has
better results than traditional methods. One popular ap-
proach is the post-processing neural network that improves
the signal-to-noise ratio in the raw reconstruction, which is
obtained by using the filtered backprojection algorithm or
the ordered-subset expectation-maximization algorithm. As
a result, the low-dose PET images may have the image
quality of the regular-dose PET. Instead of post-processing,
another approach is to use the neural network for image re-
construction. Deep learning methods require data pairs to
train the network. Good results are based on whether the
current data is closely relevant to the training data sets.
Our proposed algorithm is not a machine learning ap-
proach and does not require any data to train. The require-
ment of using our developed algorithm is that we need to
know how the image noise variance dependency on the
mean image. This means image is replaced by the raw
image in practice. For the BPF PET image reconstruction,
the raw image is the backprojected image (before the tomo-
graphic filter is applied).

Conclusions
This study develops a nonstationary filter for the list-
mode TOF PET’s BPF image reconstruction algorithm.
The BPF algorithm consists of two steps: TOF backpro-
jection and tomographic filtering. The proposed denois-
ing filter is applied between these two steps. In other
words, the nonstationary filter is applied to the TOF
backprojected image.
The filter can be 2D or 3D, and its kernel width depends

linearly on the intensity of the TOF backprojected image
according to Eq. (3). The user needs to select parameters
a and b according to the noise level and experiences.
When a = 0, the filter degenerates to a shift-invariant
filter.

Appendix
Matlab Code for the proposed nonstationary filter
% Larry, 12/17/2019% TOF PET Post Filter.
hsize = 11; % kernel size (odd int).
h2 = floor (hsize/2); % half kernel size.
isize0 = 256; % image size.
% Try (1) a = 0, c = 0.73 (RMSE = 0.6093); (2) a = 0.175,

b = 0.01, c = 0.6% (RMSE = 0.6010); Original noisy image
RMSE = 1.0759.
a = 0.;
b = 0.01;
c = 0.73;

Fig. 2 The filtered image, where a shift-invariant filter is applied with
a = 0 and c = 0.73 in Eq. (3). The RMSE is 0.6093

Fig. 3 The filtered image, where a nonstationary filter is applied
with a = 0.175, b = 0.01 and c = 0.6 in Eq. (3). The RMSE is 0.6010
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rng (1); % random number seeding.
ph 0 = 10 * phantom (isize0); % Sepp-Logan phantom.
ph = padarray (ph 0, [h2 h2]); % Pad zeros.
ph = imnoise (ph*1e-12,’ poisson’) * 1e12; % Add Pois-

son noise.
im_out = zeros (size (ph)); % Output initialization.
Figure (2), imshow (ph, []), title (‘noisy image’).
for i = h2 + 1:isize0 + h2.
for j = h2 + 1:isize0 + h2.
temp = ph (i-h2:i + h2, j-h2:j + h2); % image patch.
sigma = a * (ph (i, j)).^b + c; % kernel width.
h = fspecial (‘gaussian’, hsize, sigma); % Filter kernel.
im_out (i, j) = dot (h(:), temp (:)); % inner product.
end
end
Figure (4), imshow (im_out, []), title (‘filtered image’).
I = im_out;
imax =max (I (:));
imin =min(I (:));
I = (I - imin)/(imax - imin);
% imwrite (I,’ a175b01c61.tif’) % RMSE 0.6010.
imwrite (I,’ a0c73.tif’) % RMSE 0.6093.
I = ph;
imax =max (I (:));
imin =min (I (:));
I = (I - imin)/(imax - imin);
imwrite (I,’ noisyImage.tif’).
ph 1 = padarray (ph 0, [h2 h2]);
ph 1 = (ph 1-im_out).^2;
MSE = sqrt (sum(ph 1(:))/ length (ph 1(:))) % RMSE.
ph 1 = padarray (ph 0, [h2 h2]);
ph 1 = (ph-ph 1).^2;
noisyMSE = sqrt (sum (ph 1(:))/ length (ph 1(:))) %

RMSE.
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