
ORIGINAL ARTICLE Open Access

A digital assistant for shading paper
sketches
Amal Dev Parakkat1,2*, Hari Hara Gowtham1, Sarang Joshi1 and Ramanathan Muthuganapathy1

Abstract

We present a mixed reality-based assistive system for shading paper sketches. Given a paper sketch made by an
artist, our interface helps inexperienced users to shade it appropriately. Initially, using a simple Delaunay-
triangulation based inflation algorithm, an approximate depth map is computed. The system then highlights areas
(to assist shading) based on a rendering of the 2.5-dimensional inflated model of the input contour. With the help
of a mixed reality system, we project the highlighted areas back to aid users. The hints given by the system are
used for shading and are smudged appropriately to apply an artistic shading to the sketch. The user is given
flexibility at various levels to simulate conditions such as height and light position. Experiments show that the
proposed system aids novice users in creating sketches with impressive shading.

Keywords: Shading, Paper sketch, Mixed reality, Iso-contours, Delaunay triangulation, Digital art

Introduction
Given an outer boundary, it is easy to fill the area with a
single color. However, shading brings life to a sketch. A
plain and simple sketch can be made attractive by shad-
ing it appropriately (Fig. 1 shows the result of plain col-
oring and shading on a sketch). Appropriate shading
might motivate the user to become more involved in
such activities as it gives a 3-dimensional (3D) feel of the
2-dimensional (2D) sketch. However, most people find it
difficult to create an artistic feel through shading. By ex-
periments, we found that the difficulty is not due to lack
of ability. Instead, there is a lack of proper knowledge
about where to apply which color. In this work, we
introduce first of its kind user assistance system to shade
a sketch on real paper. To find the essential pieces of in-
formation that aid shading, a 3D correspondence has to
be inferred from the sketch. Though a lot of work has
been done to create a 3D reconstruction from a single
image, it is proven that general 3D reconstruction is dif-
ficult. This is primarily because of the difficulties in
computing the depth map accurately. Fortunately, for

applications such as shading, rather than computing ab-
solute depth, it is perhaps sufficient to compute an ap-
proximate one. Shading also gives a symmetric 3D feel
about the plane of the sketch. Hence, one can view shad-
ing as creating a 2.5-dimensional (2.5D) (throughout this
paper, we make use of the term 2.5D, to denote an in-
complete 3D model which can only be used for faking
the depth) feel rather than 3D, eliminating the need to
go for computational intensive procedures for comput-
ing 3D depth. Such an approach can also lead to a re-
duced number of user interventions.
Once a 2.5D digital representation of the sketch is cal-

culated, a shader can be applied to provide a 3D look to
the model. Replicating this 3D-lookalike shading to a
paper sketch (a sketch in the physical world) is not
straightforward because of the presence of a large num-
ber of pixel colors available in rendered images. One
way to address this is to place minute dots in each pos-
ition corresponding to a pixel in the paper sketch, with
the pixel color as in the rendered image. Since this is
time-consuming and we may not have all the colors cor-
responding to each pixel in the rendered image, the task
becomes cumbersome. To overcome this, the pixels in
the rendered image can be grouped appropriately to
make shading easy.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: adp.upasana@gmail.com
1Indian Institute of Technology Madras, Chennai 600036, India
2Indian Institute of Technology Guwahati, Assam 781039, India

Visual Computing for Industry,
Biomedicine, and Art

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art
 (2020) 3:15
https://doi.org/10.1186/s42492-020-00049-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-020-00049-7&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:adp.upasana@gmail.com

Even though various methods exist to assist the
sketching process on a paper sketch, to the best of our
knowledge, no previous research has been published to
support shading a paper sketch without additional infor-
mation. In this context, we present an interactive digital
assistant whose aim is to create impressive shadings and
to make the shading task easier, particularly for novice
users. Based on very little information provided by the
user, a 2.5D inflation of the digital version of the paper
sketch (acquired by scanning) is computed. Since the
main factors influencing shading include depth, base
color, lighting position, and intensities, the user is given
the flexibility to adjust these aspects.
In this paper, the major contribution is our framework,

which contains three parts: a 2.5D inflation algorithm,
iso-contour computation with appropriate colors, and a
mixed reality interface. The major challenges for design-
ing this system can be described as follows: First, we
need a simple to understand and implement inflation al-
gorithm to create a 2.5D model from the sketches. Sec-
ond, user interactions should be easy, intuitive, and

straightforward since the target users are novices and
may include artists who are not comfortable using com-
plicated user interfaces. Finally, the iso-contours gener-
ated should be easy to map into the physical medium
(i.e., mapping from digital iso-contours to a paper
sketch). The first two challenges are handled by using
simple and easy to edit 2.5D modeling. To address the
final challenge, we took advantage of the power of the
mixed reality interface. Figure 2 shows a sample sketch,
an inflated mesh in 2.5D, and the shading given with the
assistance of our system.

Related framework
Software-based assistance used to help novice users cre-
ate artwork is not a new concept in the computer graph-
ics community. The level of support spans from
assisting simple processes like sketching [1] and coloring
[2], up to creating complex tasks like clay sculpting [3],
making wire arts [4], wind-up toys [5], pop-up paper
models [6], generating abstract 3D representations with
planar sections [7] or pipes [8]. Computer assisted tools

Fig. 1 a: A sample sketch; b: After applying flat coloring; c: Coloring with appropriate shades

Fig. 2 a: A sample sketch; b: 2.5D inflation mesh; c: Shading done with our system assistance

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 2 of 16

for developing art works like Deco [9], Weavy [10], the
design of iris folding patterns [11] are also used to sup-
port artistic tasks.
Aside from the non-photo realistic rendering of digital

images, some contributions concentrate on using digital
assistants to create art in the physical world. For ex-
ample, Shilkrot et al. [2] introduced a device with 6 de-
gree of freedom tracking to facilitate an augmented
airbrush for computer-aided painting. Whereas, Prévost
et al. [12] introduced a system which tracks the position
of a spray can and determines the amount to be dis-
persed for replicating an image with spray paint.
Some published research focuses on making the color-

ing process easy and fun-filled. Two main contributions
moving in this direction are by Clark et al. [13] and
Magnenat et al. [14]. Both use the power of augmented
reality to demonstrate the impact of coloring a sketch by
mapping the effect on an associated 3D model in real-
time. A connecting-the-dots approach using an aug-
mented reality interface for sketching can be observed in

ref. [15]. Various commercial products such as Crayola
Color Alive [16], Chromville [17], and Disney’s “Color
and Play” [18] are also available which help to visualize
the effect of coloring, on an associated 3D model. The
main disadvantage of such systems is the need for
apriori knowledge about the associated 3D model for
each sketch. MagicToon [19] offers another similar pub-
lication in which the main objective is to facilitate a 3D
color mapped cartoon model creation from 2D draw-
ings. The system creates an automatic 3D model from a
2D sketch and also provides operations to edit and ani-
mate the model. Flagg and Rehg [20] help users to imi-
tate the given painting with real-time feedback. The
input painting is divided into layers and, with the help of
a projector and a real-time camera, the user is asked to
paint. Aside from the coloring assistants, manipulating
shading based on inflated models have also been pre-
sented in refs. [21–23]. Recently Panotopoulou et al. [24]
developed a wooden block painting system. Unfortu-
nately, this is not scalable and requires a dedicated set of

Fig. 3 Overall pipeline of the proposed system

Fig. 4 Various steps in the inflation procedure. a: A sketch boundary; b: DT of the point set extracted from the boundary pixels; c: Result after
Delaunay sculpting; d: Result after edge subdivision; e: DT after edge subdivision; f: Result after inflation

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 3 of 16

wooden blocks for each painting. The natural alternative
to avoid these limitations is to use an augmented/mixed
reality interface. Significant advantages for using such a
system include the ability to reuse resources and the
cost-effective setup.

Methods
Overall framework
Figure 3 shows the overall pipeline of our shading assist-
ance system. The system starts with an uncolored sketch
boundary provided by the user, which has yet to be col-
ored. Initially, based on user annotations, the sketch is
segmented into different pieces. With the help of the
user, the segments are inflated using a Delaunay-
triangulation based sketch inflation algorithm and lay-
ered appropriately. Toon shading is applied to this lay-
ered model to compute various iso-contours such that
each iso-contour can be filled with a single color. Using
a digitally colored sketch (boundary sketch colored using
a flood fill procedure) as a reference, we identify the
colors to be filled inside each iso-contour. The shades,
along with appropriate regions, are projected back to the
table surface with the help of a mixed reality interface.
The guidelines (areas along with shades) are used to cre-
ate beautiful shades on the sketch.

Sketch inflation
Given a sketch, various algorithms exist for generating
2.5D inflation. Though methods explained in Teddy
[25], RigMesh [26] can be used for generating same, we
use the following approach for inflation:

� Boundary pixels of the shape to be inflated are
extracted and used to create a point set;

� Delaunay triangulation (DT) of the point set is
computed, and triangles lying outside the shape are
removed (as in ref. [27]);

� Each remaining triangle in the triangulation is
inflated using the following procedure:

� The boundary of the triangle is divided into n points
(n is set as 24 for the experimental purpose by
applying mid-point subdivision on edges, such that
each point can be elevated appropriately to convert
the edge into a semi-circle) and let N be the set of
all n points;

� DT of N is computed;
� Each sampled point in the edges other than the

exterior edges (edges which are not part of more
than one triangle) is then assigned a z-coordinate
based on its distance from the midpoint of the
edge, d:

Fig. 5 Mirror symmetric 3D model (after uniform resampling) generated by the inflation procedure

Fig. 6 (Left to Right) a: Sketch after region based segmentation; b: Identified regions; c: User annotations for region updation; d: Updated regions

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 4 of 16

h0 ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ABk k
2

� �

s

2−d2 ð1Þ

where A and B are the endpoints of the edge, and e ∈
[− 2, 2] is an elevation parameter used to control the
height of inflation.

� Connectivity is made between elevated points based
on DT(N)

Figure 4 demonstrates the various steps in the inflation
algorithm. Starting from a simple sketch, as shown in
Fig. 4a, pixels are converted into points and used to
compute the DT (Fig. 4b), triangles lying outside the
shape are removed (Fig. 4c), and the result of edge sub-
division is shown in Fig. 4d. The result after computing
the DT of each triangle under consideration is shown in
Fig. 4e, and Fig. 4f shows the final inflated result after
assigning a depth value to each sampled point. It should
be noted that assigning positive and negative depth
values along with connection information derived from
the DT, can be used to create mirror-symmetric 3D
models. Figure 5 shows a sample mirror-symmetric 3D
model (after smoothing with uniform resampling) gener-
ated with the help of our inflation procedure.

Since our input is a plain sketch without any add-
itional information, we apply a number of pre-
processing operations to order them. Given a sketch, it
is possible to create different 2.5D models because of the
presence of textures and different elevation levels. Since
the texture, elevation, and layering information cannot
be directly inferred from the sketch, we involve user
intervention to create the 2.5D model, which best ap-
proximates user imagination. To achieve this, we took
advantage of interactive region-based segmentation and
elevation procedures.

Region based segmentation
Given a sketch, one of the difficult tasks is to seg-
ment it meaningfully. Unfortunately, automatic seg-
mentation becomes more challenging if textures are
present in the input sketch (the difficulty lies in dis-
tinguishing textures from the regular parts). Rather
than placing extra constraints on the input sketch, we
involve user intervention to complete the task. From
a user’s point of view, identifying textures from a
sketch is a straight-forward task. Starting from an ini-
tial segmentation in which each closed region will be
a segment (by repeatedly applying the Flood-Fill algo-
rithm), based on the user annotations, regions are up-
dated. User annotation is applied by marking two
regions and defining one of the two operations:

Fig. 7 (Left to Right) a: Part of a region; b: Its inflated result; c: Region shown in (a) after dilation operation; d: Inflated result of (c)

Fig. 8 a: Annotated sketch along with region elevation marking (cyan colored arrow); b: Regions; c, d: Graphs (c) before and (d) after region
elevation marking; e, f: Models (e) before and (f) after region elevation

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 5 of 16

(1) Merging regions: Segments corresponding to the
selected regions are merged (for example, removal
of textures from the body of the seahorse in
Fig. 6d). The red arrows in Fig. 6 illustrate this
operation, where we merge the regions at the end
and tip of the arrow.

(2) Separating regions: The regions are separated and
considered as two independent regions (for
example, separating the eye as a different region
from the body of the seahorse in Fig. 6d). The blue
arrow in Fig. 6 illustrates this operation, where we
separate the regions at the end and tip of the arrow
to create two independent regions.

The user can also mark hole regions that do not re-
quire inflation. Figure 6a shows a sample sketch after
automatic region segmentation and the respective seg-
ments (Fig. 6b), the user annotations on automatic seg-
mentation and the segments after user intervention are
shown in Fig. 6c and Fig. 6d.

Once segmentation is over, the inflation algorithm can
be applied for each segment individually. However, the
presence of decorative lines (small decorative line in the
ear of the seahorse as shown in Fig. 7a) will leave some
thin holes in the segmented result. To address this prob-
lem, before inflation, we applied a morphological thin-
ning operation on the segmented result, which fills the
gap made by decorative lines. Figure 7 shows the effect
of the dilation operation on the inflation result.

Sketch elevation
Another important property that must be considered in
a 2.5D model is the relative heights. The inflated regions
have to be layered appropriately, and this is a difficult
task to automate. In this implementation, we employed
user annotations (cyan colored arrows) to give a relative
depth setting. Initially, a directed graph G is made with
vertex set V, where each vi ∈ V represents a region. As
the user annotates, edges are made between appropriate
regions (Fig. 8 shows an example of this). Based on G,
the height of the 2.5D model of the corresponding re-
gion is relatively set. Let vertices vi and vj correspond to
regions Ri and Rj respectively and G has an edge from vi
to vj, then the inflation of Rj is elevated to the projection
plane defined by the maximum z-coordinate of Ri. To
avoid confliction, a cycle of regions where one overlaps
the other is not allowed.
The following steps are taken to elevate one region

over the other:

� We first find the highest z-coordinate at each
vertex of the region we are elevating, by creating
an intersection between a ray along z-axis passing
through the vertex with the thus far obtained
2.5D mesh.

Fig. 9 Boundary elevation. a: Input sketch; b: Annotated flood fill segmentation along with system calculated boundaries to be elevated (red
paths) based on user markings (yellow points); c: Inflated mesh

Fig. 10 Top view of our boundary elevated model shown in Fig. 9c

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 6 of 16

� Among all the intersection points, the highest
value is found (say z0), and is used as the base
height for the elevated region instead of 0, i.e.,
the value z0 is added to the height h0, obtained
by inflation of the region, as (h0) as h(p) =
h0(p) + z0.

Figures 8a-e show an annotated sketch (cyan arrow
shows the elevation annotation), regions, initial graph
and the graph after introducing the edge. Alongside this
are the adjacency matrices, inflation of individual re-
gions, and the final inflated mesh after elevating the eye
region.

Boundary elevation
The strategy described above works well when the 3D
model’s boundary entirely lies on the projection plane.
However, this may not always be the case; for example,
in Fig. 9, the broken part of the eggshell (highlighted) is
not in the same plane as the rest of the boundary.
To handle these cases, we propose an approach that

involves user input to identify such regions, and inflate
them separately using the following steps:

� The user selects the start and endpoint of this
boundary (say A and B), and any interior point C, to
decide which path to take when going from A to B.

Fig. 11 Results of our inflation procedure. a: Input sketch; b: Annotated regions; c: Result of our inflation procedure

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 7 of 16

� The boundary to be inflated is then constructed to
be the shortest path from A to B via C.

� This is a curve in R2, let γ ∈ [0, l] R2 represent
the arc length parameterization, with parameter s
and l represents the total length of the boundary to

be elevated. Each point on γ is inflated by assigning
it a height h: [0, l] R given by:

h sð Þ ¼ k�
ffi

l
2

� �2

− s−
l
2

� �2
s

ð2Þ

where k is a user-defined scaling variable, intuitively,
this height field is semi-circular in shape, i.e., height is
zero at A and B, and at a maximum when halfway be-
tween these points, it also ensures the continuous transi-
tioning to the remaining boundary.
Figure 10 shows the top view of the model in Fig. 9c,

and it can be observed that the selected boundary is ele-
vated. Some results generated using our inflation pro-
cedure are shown in Fig. 11. It should be noted that
various features such as the object with holes (Buddha’s
ear), sharp corners (points on the chicken’s comb), thin
films (fin and tail of the gold fish), negatively elevated
boundary (the back legs of the teddy bear) are generated
using our simple approach.
The Delaunay-triangulation based inflation algorithm

is easy to implement and conceptualize. Since we are
directly manipulating the Delaunay-triangulation, hur-
dles such as computing Constrained Delaunay-
triangulation without missing any important features in
the input image, and pruning to find simplified sym-
metry axes, can be avoided. Also, since the system is
intended for novice users, providing simple annotations
(such as alignment and segmentation information) is
better than complicated inputs such as bending strokes.

Shading contour generation
Digitally shading a model is simplified because of the
existence of various rendering algorithms. However,

Fig. 12 a: Toon shaded model; b: Identified regions; c: Generated iso-contours

Fig. 13 A sample inflated model

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 8 of 16

replicating the same procedure for shading in a phys-
ical medium is difficult due to less availability of the
drawing medium shades and the complexity of the
procedure involved. Further, many users are not expe-
rienced with the shading procedure. To tackle these
problems, the objective in this phase is to create eas-
ily understandable guidelines that a novice user can
follow. From kindergarten, we are familiar with filling
a given boundary with a single color. Building on this
familiarity, we observed that a sketch could be di-
vided into a different set of boundaries such that each
boundary can be filled with a single color. In this
phase, the sketch is initially divided into such bound-
aries (iso-contours) based on the inflated 2.5D mesh,
and then the color to be filled inside each boundary
is computed.

Iso-contour identification
To divide the sketch into different boundaries, the pixels
in the rendered 2.5D mesh must be classified based on
the intensity. To achieve this, boundaries (iso-contours)
are identified from the inflated model based on the toon
shading of the 2.5D model. Iso-contours are computed
by applying intensity-based thresholding on the toon-
shaded model to divide the sketch into regions (for ex-
perimental purpose, we fixed the number of color levels
of toon-shading at four). Opening followed by closing
operations can be applied to individual regions, to re-
move the effect of small regions and to make shading
easier. Figs. 12a-c show a sample toon shading (of a sim-
ple 2.5D mesh generated using our inflation algorithm
as shown in Fig. 13), identified regions (cyan, blue, green
and red show different regions with decreasing level of

Fig. 14 Toon shading with various light positions

Fig. 15 a: Input sketch; b: Inflated 2.5D model; c: Identified regions; d: Computed iso-contours

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 9 of 16

intensities) and computed iso-contours respectively. The
user can also change the light direction and its intensity
to create varieties of shading effects. Figure 14 shows the
effect of toon shading for various light positions (For
more information regarding the camera’s auto-exposure
control, we refer the readers to refs. [28–31].). Some iso-
contours generated using our algorithm, along with the
corresponding sketch, inflated model, and identified re-
gions are shown in Fig. 15.

Color computation
Once the iso-contours have been computed, the colors
to be filled in each boundary are identified using the fol-
lowing steps:

� The user digitally fills the sketch boundaries with
some solid colors using a procedure similar to flood-
fill.

� The solid color pixels are transformed into its dark
and light shades according to the iso-contour it be-
longs to. A pixel is replaced by following the shades,
meaning lighter, same, dark, and darkest shades if it

lies in cyan, blue, green, and red areas (as shown in
Fig. 12b), respectively.

Let the Red Green Blue colors of a pixel in a digitally
colored sketch be (R1, G1, B1), the red component of
the lighter shade is computed using the equation:

Rl ¼ R1 þ ð255−R1Þ�t f ð3Þ
where tf is the tint factor. Using the same equation

by replacing R1 by G1 and B1, the green and blue
components of the pixel are computed respectively.
As the value of tf increases, the tint becomes lighter
and lighter and eventually becomes white when tf = 1.
For experimental purposes, tf is set to 0.75. Similarly,
the red component of the dark shade is computed
using the equation:

Rd ¼ R1� 1−sfð Þ ð4Þ
where sf is the shade factor. The R1 is replaced by G1

and B1 respectively to find the green and blue compo-
nent of the pixel. As the value of sf increases, the shade

Fig. 16 a, c: Sketches colored based on user annotations; b, d: Guideline images computed by our system

Fig. 17 A sample shading before and after applying smudging

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 10 of 16

becomes darker and eventually becomes black when sf =
1. For experimental purposes, sf is set to 0.4. The same
equation is also used for the darkest shade computation
by setting sf = 0.75.
Figure 16 shows two sample colored sketches (based

on user annotation) along with region-based shades
computed by our system.

Mixed reality interface
Once the iso-contours and shades are computed, this is
delivered to the user. Since it is complicated for the user
to translate the image and/or copy it directly to paper,
we provide a mixed reality interface to simplify the task.

Initially, the guidelines containing iso-contours and
shades are copied to a guideline-image.
The guideline-image is then projected to the surface

containing the sketch. This projection of iso-contours
onto the sketch has various advantages, like the ability to
quickly scale the iso-contours to fit sketches of various
sizes, it is also cost-effective and easily available. Once
the transparent iso-contours and respective colors are
projected onto the screen, users are asked to fill each
contour with the appropriate color. Once coloring is
complete, according to their expertise level, they
smudged boundaries to give a smooth transition of
colors between contours. A sample shading before and
after smudging the boundaries are shown in Fig. 17. To
handle the mismatch between the size of the projected
guideline-image and the original image (e.g., an image in
a sketchbook), we provided a scaling tool in which the
user can adjust the size of the guideline-image until it
fits the sketch perfectly. Once the transparent guideline-
image is projected onto the sketchbook, users are asked
to fill each contour with the appropriate color. The
setup works well if the position of the sketchbook is
fixed. The coloring task becomes cumbersome if the
sketchbook position is fixed. To overcome this uneasi-
ness and to provide more flexibility, we must track the
position of the sketch. To facilitate the tracking, we
made use of the positioning markers of quick response
(QR) codes (markers are shown in Fig. 18).
Our experimental setup consists of a low-cost pro-

jector, a mobile, and a laptop (Fig. 19). The need for a
laptop can be avoided by creating a standalone mobile
application. The projector is placed perpendicular to the

Fig. 18 Positioning markings in a QR code

Fig. 19 Overall hardware setup: The guideline-image is projected to the table with the help of a projector. Based on the position of the QR code
in the captured video, appropriate transformations are applied on the guideline-image with the help of a computer

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 11 of 16

drawing board with the mobile appropriately placed to
capture the entire projection screen (both are kept in
such a way that the QR codes are readable from the
video feed). Once the hardware components are cor-
rectly placed, the guideline image is projected onto the
shading surface. However, the user must keep the paper
sketch stable to avoid the mismatch of alignment be-
tween the projected guideline image and the paper
sketch. This is a major constraint that restricts user free-
dom. To overcome this issue, we proceeded with the

following steps to facilitate real-time tracking of the
paper sketch:

� The guideline image is projected to the drawing
surface.

� Since the resolution of the mobile and projector are
different, the projection area alone is extracted from
the video and resized to fit the projector resolution.

� The QR codes which are placed on the diagonal
ends of the A4 sized sketch are located.

Fig. 20 Information derived from a sample sketch in an A4 sheet along with QR codes fixed on its diagonal ends

Fig. 21 Some stills taken during the shading process of a paper sketch

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 12 of 16

� With easy translate and scale functions, the user is
asked to align the guideline-image to the paper sketch.

� The scaled and translated guideline image is resized
based on the distance between QR codes.

� For each of the identified QR codes, the diagonal
positional markings are identified by taking the two
farthest markings.

� Once aligned, the reference line AB is constructed
where A and B are the middle points of the
identified diagonal markings of each QR code.
Figure 20 shows a sample reference line on a sample
sketch along with other related information.

� The position of A and B are monitored continuously
until it deviates from the previous frame of video,
and the guideline image is placed appropriately.

These steps make sure that the guideline image is al-
ways correctly aligned over the paper sketch, even if we
move it. To avoid unnecessary transformations that
might happen to the guideline image due to the missing
QR code position (if either of the QR codes is blocked
from the camera), transformations are applied only when
both QR codes are visible in the video feed. During the
user study, users were instructed to always keep the
paper sketch inside the area lit by the projector and not
to keep the hand/head over QR code for a long time.

Since we are taking the video at a rate of 30 fps, we are
not expecting the user to make a sudden 180 rotation to
ensure our system works smoothly. Figure 21 shows a
few instances from a user operating our system to create
shades to a paper sketch. It can be observed that the
guideline image is properly aligned over the paper
sketch, even on different orientations. The system pro-
vides value irrespective of the shading medium used
since the procedure is the same. Figure 22 shows a paper
sketch colored with different mediums (pastel, water-
color, pencil, respectively). Shading applied to the
sketches shown in Fig. 11 using our system is illustrated
in Fig. 23. The result of shading provided by various
users with the help of our shading assistant is shown in
Fig. 24.
Taking advantage of the scalability of the projector, by

appropriately placing QR markers and the projector, we
created a large portrait of size 565mm × 720mm with
proper shading. This took approximately 2 h to
complete. Figures 25a-d show various stages during the
shading procedure and Fig. 25e shows the final shaded
sketch.

Conclusion, limitations and future works
We have demonstrated a new approach to assist users in
shading a paper sketch (without the availability of

Fig. 22 Shading given using different coloring mediums (pastel, water color and pencil respectively)

Fig. 23 Some shaded paper sketches with the assistance of our system

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 13 of 16

Fig. 25 A large portrait created with the help of our system, a-e show various stages in the creation process and e shows the final result

Fig. 24 Shading done by various users with the help of our digital assistant

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 14 of 16

shading information). The proposed system is targeted
towards unskilled users to provide an artistic feel to the
sketch. Our system initially creates a 2.5D representation
from the sketch with the help of a few user-generated
strokes and is further used for computing iso-contours
and appropriate colors. We found that the proposed sys-
tem increased the ability of users to create artistic shad-
ing with 3D look-alike cues. Our system can also be
used for creating large portraits (Fig. 25).
Even though our system is easy to use, it has a

few limitations. For example, we require some user
interaction to create a 2.5D representation. Further,
we assume the shapes have elliptical cross-sections
(which is a limited subset). One of the interesting
future directions could be to generalize 2.5D model-
ing by including varying cross-sectional objects.
Though our system provides the color to be filled in
each iso-contour, it does not provide information
about the color combinations to be used to create
the shade, which is sometimes a difficult task for
first time users. Thus, the system could be improved
by implementing this detail.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42492-020-00049-7.

Additional file 1: Video.

Abbreviations
2D: 2-Dimensional; 3D: 3-Dimensional; 2.5D: 2.5-Dimensional; DT: Delaunay
triangulation; QR code : Quick response code

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Please contact the corresponding author for data requests.

Competing interests
The authors declare that they have no competing interests.

Received: 12 December 2019 Accepted: 30 April 2020

References
1. Laviole J, Hachet M (2012) PapARt: interactive 3D graphics and multi-touch

augmented paper for artistic creation. Paper presented at the 2012 IEEE
symposium on 3D user interfaces, IEEE, Costa Mesa, 4-5 march 2012. https://
doi.org/10.1109/3DUI.2012.6184167

2. Shilkrot R, Maes P, Paradiso JA, Zoran A (2015) Augmented airbrush for
computer aided painting (CAP). ACM Trans Graph 34(2):19. https://doi.org/
10.1145/2699649

3. Rivers A, Adams A, Durand F (2012) Sculpting by numbers. ACM Trans
Graph 31(6):157. https://doi.org/10.1145/2366145.2366176

4. Liu LJ, Ceylan D, Lin C, Wang WP, Mitra NJ (2017) Image-based
reconstruction of wire art. ACM Trans Graph 36(4):63. https://doi.org/10.
1145/3072959.3073682

5. Song P, Wang XF, Tang X, Fu CW, Xu HF, Liu LG et al (2017) Computational
design of wind-up toys. ACM Trans Graph 36(6):238. https://doi.org/10.1145/
3130800.3130808

6. Li XY, Shen CH, Huang SS, Ju T, Hu SM (2010) Popup: automatic paper
architectures from 3D models. ACM Trans Graph 29(4):111. https://doi.org/
10.1145/1778765.1778848

7. McCrae J, Umetani N, Singh K (2014) FlatFitFab: interactive modeling with
planar sections. Paper presented at the 27th annual ACM symposium on
user interface software and technology. ACM, Hawaii. https://doi.org/10.
1145/2642918.2647388

8. Agrawal H, Umapathi U, Kovacs R, Frohnhofen J, Chen HT, Mueller S, et al
(2015) Protopiper: physically sketching room-sized objects at actual scale.
Paper presented at the 28th annual ACM symposium on user interface
software & technology, ACM, Charlotte, 11-15 November 2015. https://doi.
org/10.1145/2807442.2807505

9. Igarashi Y (2011) Deco: a design editor for rhinestone decorations. IEEE
Comput Graph Appl 31(5):90–94. https://doi.org/10.1109/MCG.2011.73

10. Igarashi Y, Mitani J (2014) Weavy: interactive card-weaving design and
construction. IEEE Comput Graph Appl 34(4):22–29. https://doi.org/10.1109/
MCG.2014.77

11. Igarashi Y, Igarashi T, Mitani J (2016) Computational design of iris folding
patterns. Computat Vis Media 2(4):321–327. https://doi.org/10.1007/s41095-
016-0062-4

12. Prévost R, Jacobson A, Jarosz W, Sorkine-Hornung O (2016) Large-scale
painting of photographs by interactive optimization. Comput Graphics 55:
108–117. https://doi.org/10.1016/j.cag.2015.11.001

13. Clark A, Dünser A, Grasset R (2011) An interactive augmented reality
coloring book. Paper presented at the SIGGRAPH Asia 2011 emerging
technologies, ACM, Hong Kong, 12-15 December 2011. https://doi.org/10.
1145/2073370.2073394

14. Magnenat S, Ngo DT, Zünd F, Ryffel M, Noris G, Rothlin G et al (2015) Live
texturing of augmented reality characters from colored drawings. IEEE Trans
Vis Comput Graphics 21(11):1201–1210. https://doi.org/10.1109/TVCG.2015.
2459871

15. Parakkat AD, Joshi SA, Pundarikaksha UB, Muthuganapathy R (2017) Sketch
and shade: an interactive assistant for sketching and shading. In:
proceedings of the symposium on sketch-based interfaces and modeling,
ACM, California, Los Angeles, 29-30 July 2017. https://doi.org/10.1145/
3092907.3122799

16. Crayola Color Alive (2019). http://www.crayola.com/. Accessed 12 Nov 2019
17. Chromville (2019). https://chromville.com/. Accessed 12 Nov 2019
18. Color and play (2019). http://www.onlycoloringpages.com/. Accessed 12

Nov 2019
19. Feng LL, Yang XB, Xiao SJ (2017) MagicToon: a 2D-to-3D creative cartoon

modeling system with mobile AR. Paper presented at 2017 IEEE virtual
reality, IEEE, Los Angeles, 18-22 march 2017. https://doi.org/10.1109/VR.2017.
7892247

20. Flagg M, Rehg JM (2006) Projector-guided painting. Paper presented at the
19th annual ACM symposium on user interface software and technology,
ACM, Montreux, 15-18 October 2006. https://doi.org/10.1145/1166253.
1166290

21. Anjyo KI, Wemler S, Baxter W (2006) Tweakable light and shade for cartoon
animation. Paper presented at the 4th international symposium on non-
photorealistic animation and rendering, ACM, Annecy, 5-7 June 2006.
https://doi.org/10.1145/1124728.1124750

22. Todo H, Anjyo KI, Baxter W, Igarashi T (2007) Locally controllable stylized
shading. ACM Trans Graph 26(3):17. https://doi.org/10.1145/1276377.
1276399

23. Hudon M, Pagés R, Grogan M, Ondřej J, Smolić A (2018) 2D shading for cel
animation. Paper presented at the joint symposium on computational
aesthetics and sketch-based interfaces and modeling and non-photorealistic
animation and rendering, ACM, British Columbia, 17-19 august 2018. https://
doi.org/10.1145/3229147.3229148

24. Panotopoulou A, Paris S, Whiting E (2018) Watercolor woodblock printing
with image analysis. Comput Graphics Forum 37(2):275–286. https://doi.org/
10.1111/cgf.13360

25. Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3D
freeform design. Paper presented at the 26th annual conference on

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 15 of 16

https://doi.org/10.1186/s42492-020-00049-7
https://doi.org/10.1186/s42492-020-00049-7
https://doi.org/10.1109/3DUI.2012.6184167
https://doi.org/10.1109/3DUI.2012.6184167
https://doi.org/10.1145/2699649
https://doi.org/10.1145/2699649
https://doi.org/10.1145/2366145.2366176
https://doi.org/10.1145/3072959.3073682
https://doi.org/10.1145/3072959.3073682
https://doi.org/10.1145/3130800.3130808
https://doi.org/10.1145/3130800.3130808
https://doi.org/10.1145/1778765.1778848
https://doi.org/10.1145/1778765.1778848
https://doi.org/10.1145/2642918.2647388
https://doi.org/10.1145/2642918.2647388
https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1145/2807442.2807505
https://doi.org/10.1109/MCG.2011.73
https://doi.org/10.1109/MCG.2014.77
https://doi.org/10.1109/MCG.2014.77
https://doi.org/10.1007/s41095-016-0062-4
https://doi.org/10.1007/s41095-016-0062-4
https://doi.org/10.1016/j.cag.2015.11.001
https://doi.org/10.1145/2073370.2073394
https://doi.org/10.1145/2073370.2073394
https://doi.org/10.1109/TVCG.2015.2459871
https://doi.org/10.1109/TVCG.2015.2459871
https://doi.org/10.1145/3092907.3122799
https://doi.org/10.1145/3092907.3122799
http://www.crayola.com/
https://chromville.com/
http://www.onlycoloringpages.com/
https://doi.org/10.1109/VR.2017.7892247
https://doi.org/10.1109/VR.2017.7892247
https://doi.org/10.1145/1166253.1166290
https://doi.org/10.1145/1166253.1166290
https://doi.org/10.1145/1124728.1124750
https://doi.org/10.1145/1276377.1276399
https://doi.org/10.1145/1276377.1276399
https://doi.org/10.1145/3229147.3229148
https://doi.org/10.1145/3229147.3229148
https://doi.org/10.1111/cgf.13360
https://doi.org/10.1111/cgf.13360

computer graphics and interactive techniques, ACM, Los Angeles, July 1999.
https://doi.org/10.1145/311535.311602

26. Borosán P, Jin M, DeCarlo D, Gingold Y, Nealen A (2012) RigMesh: automatic
rigging for part-based shape modeling and deformation. ACM Trans Graph
31(6):198. https://doi.org/10.1145/2366145.2366217

27. Methirumangalath S, Parakkat AD, Muthuganapathy R (2015) A unified
approach towards reconstruction of a planar point set. Comput Graphics 51:
90–97. https://doi.org/10.1016/j.cag.2015.05.025

28. Liang JY, Qin YJ, Hong ZL (2007) An auto-exposure algorithm for detecting
high contrast lighting conditions. Paper presented at 2007 7th international
conference on ASIC, IEEE, Guilin, 22-25 October 2007. https://doi.org/10.
1109/ICASIC.2007.4415733

29. Su YH, Lin JY, Kuo CCJ (2016) A model-based approach to camera's auto
exposure control. J Vis Commun Image Represent 36:122–129

30. Su YH, Kuo CCJ (2015) Fast and robust camera’s auto exposure control
using convex or concave model. Paper presented at 2015 IEEE international
conference on consumer electronics, IEEE, Las Vegas, 9-12 January 2015.
https://doi.org/10.1109/ICCE.2015.7066300

31. Cho M, Lee S, Nam BD (1999) Fast auto-exposure algorithm based on
numerical analysis. Paper presented at SPIE 3650, sensors, cameras, and
applications for digital photography, SPIE, San Jose, 22 march 1999. https://
doi.org/10.1117/12.342853

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Parakkat et al. Visual Computing for Industry, Biomedicine, and Art (2020) 3:15 Page 16 of 16

https://doi.org/10.1145/311535.311602
https://doi.org/10.1145/2366145.2366217
https://doi.org/10.1016/j.cag.2015.05.025
https://doi.org/10.1109/ICASIC.2007.4415733
https://doi.org/10.1109/ICASIC.2007.4415733
https://doi.org/10.1109/ICCE.2015.7066300
https://doi.org/10.1117/12.342853
https://doi.org/10.1117/12.342853

	Abstract
	Introduction
	Related framework

	Methods
	Overall framework
	Sketch inflation
	Region based segmentation
	Sketch elevation
	Boundary elevation

	Shading contour generation
	Iso-contour identification
	Color computation
	Mixed reality interface

	Conclusion, limitations and future works
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

