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Pre-filter that incorporates the noise model
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Abstract

A linear denoising filter is usually of lowpass type, and the main parameter in a lowpass filter is the cutoff
frequency. The lowpass filters are normally shift invariant and can be implemented as convolution in the spatial
domain or as multiplication in the Fourier domain. This paper presents a linear filter that is not characterized by its
cutoff frequency but is characterized by the noise model. An example of such a linear filter is presented for low-
dose X-ray computed tomography (CT).
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Introduction
Nowadays, the iterative image reconstruction algorithms
have become more popular than the analytic filtered
backprojection (FBP) algorithm [1–5]. The main motiv-
ation of using an iterative algorithm is that it is much
easier to incorporate the noise model into the iterative
algorithm than into an analytic algorithm such as FBP
[6, 7]. Many noise filtering techniques are available for
the FBP algorithm [8–11]. In ref. [9], a non-linear adap-
tive filter was proposed, in which a threshold value was
assigned to determine whether the measurements were
required to be filtered.
In refs. [11, 12], a linear FBP algorithm was proposed

to mimic the iterative Landweber algorithm [13] and to
incorporate the projection noise in a window function
in the Fourier domain. The ray-by-ray noise-weighting
scheme is spatially variant. Its implementation was to
decompose the spatially variant filter into 10 spatially
invariant filters. The 10 versions of the filtered mea-
surements were then combined into one and used in
the backprojector.
Instead of mimicking an iterative algorithm to fil-

ter the noise, this paper takes a different approach
and develops a convolution lookalike linear filter for

the projection measurements. The filter being de-
signed is shift variant and is based on the noise
model. We treat each measurement as a random
variable. By noise model, we mean the relationship
between the measurement value and its standard de-
viation. For emission tomography measurements, the
mean value is approximated by its measurement.
The Poisson noise model is that the mean value and
the variance are the same. For the transmission
tomographic measurements, the logarithm has been
taken. The variance of the line-integral measurement
is proportional to the exponential function of the
line-integral measurement.

Method
This section develops a nonstationary convolution
lookalike filter for the line-integral projection meas-
urement data. Let p be the unfiltered line-integral
projection measurement and h be the spatial-domain
filter kernel. In other words, p is the logarithm of the
detected photon current from a computed tomog-
raphy (CT) scanner bin at an angle. If h is a shift-
invariant convolution kernel, the conventional linear
shift-invariant filtering procedure can be expressed as
a convolution integral below

q t; θð Þ ¼ ∬h t̂−t; θ̂−θ
� �

p t̂; θ̂
� �

dt̂dθ̂ ð1Þ

where q(t,θ) is the filtered projection. In Eq. (1), the
kernel h is shift-invariant. In other words, the shift-
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invariant filter blurs the projections p(t,θ) with the
same kernel h everywhere. If the kernel h varies from
location to location, Eq. (1) can be modified to

q t; θð Þ ¼ ∬h t̂; θ̂; t; θ
� �

p t̂; θ̂
� �

dt̂dθ̂ ð2Þ

Equation (2) is no longer in the form of convolution.
However, the computational complexity of Eq. (2) is
almost the same as the complexity of Eq. (1), except
that in Eq. (2) the kernel h must be evaluated differ-
ently for different locations (t,θ). In this paper, we as-
sume the filter kernel h to be a two dimensional (2D)
Gaussian function with a ‘standard deviation’ σh(t,θ).
Our general strategy is to relate this σh(t,θ) with the
noise standard deviation, σp(t,θ), of the noisy measure-
ment p(t,θ).
For emission measurements, the projection p(t,θ) can

be used to approximate the measurement noise variance

according the Poisson distribution. Thus, σpðt; θÞ ≈ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt; θÞp

.
For Transmission measurements, the noise variance of

the post-log measurement p(t,θ) can be approximated as
the exponential function of the line-integral p(t,θ). Thus,

σpðt; θÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðpðt; θÞÞp

.
Our general strategy is to use a large kernel size of h if

the corresponding σp(t,θ) value is large and to use a
small kernel size if the corresponding σp(t,θ) value is
small. The kernel size σh(t,θ) is thus a monotonic func-
tion of σp(t,θ). Here we propose this monotonic function
to have the form of

σh ¼ a� σbp þ c ð3Þ
For transmission tomography, Eq. (3) becomes

σh ¼ a�
ffiffiffiffiffiffiffiffiffiffiffi
ep t;θð Þ

p� �b
þ c ð4Þ

After combining the square-root and parameter b into
a single parameter b, Eq. (4) becomes

σh ¼ a� eb�p t;θð Þ þ c ð5Þ

with user defined parameters a, b, and c.
As a special case of a = 0, h has a constant σh, the filter

is then shift-invariant, and the convolution lookalike ex-
pression Eq. (2) reduces to the true convolution Eq. (1).

Results
To illustrate the feasibility of the proposed linear nonsta-
tionary filter, a cadaver torso was scanned using an X-
ray CT scanner with a low-dose setting. The projections
were first filtered by the proposed filter using Eq. (2)
and then the conventional FBP algorithm was used to
reconstruct the final image.
The cadaver data was collected with a diagnostic scan-

ner (Aquilion ONE™, Toshiba America Medical Systems,
Tustin, CA, USA; raw data courtesy of Leiden University
Medical Center). The imaging geometry was cone-beam,
the X-ray source trajectory was a circle of radius 600
mm. The detector had 320 rows, the row-height was 0.5
mm, each row had 896 channels, and the fan angle was
49.2°. A low-dose noisy scan was carried out. The tube
voltage was 120 kV and current was 60 mA. There were
1200 views uniformly sampled over 360°. Three patient
slices were selected to test our proposed spatially variant
filter.
Figure 1 shows the FBP reconstruction of three image

slices from the low-dose CT data. It is observed that
some horizontal streaking artifacts pass through both
arms and the torso. The X-rays passing through both
arms suffer from photon starvation and create large
noise.
Figures 2, 3, 4, 5, 6 show the FBP reconstructions of

three image slices from the pre-filtered low-dose CT
data. The pre-filters were nonstationary, the associated
kernel h was a Gaussian function, whose ‘standard devi-
ation’ value σh was defined in Eq. (5). They shared the
same values of a = 2.5 and c = − 2.49975. The b value
was different, with b = 4, 3, 2, 1, and 0.5, respectively. It

Fig. 1 FBP reconstruction of three image slices using the regular-dose data without pre-filtering. These images are the gold standard images for
other images to compare with. Left to Right: Slice 1, Slice 32, and Slice 64
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seems that a large b value helps removing the streaking
artifacts.
Figures 7 and 8 show the FBP reconstructions from

the pre-filtered low-dose CT data. This time, the pre-
filters were stationary, that is, the kernel h was shift-

invariant by setting a = 0. The parameter c controls the
degree of smoothing during filtering. In Figs. 7 and 8,
c = 2 and 4, respectively. For a stationary filter, the entire
image is smoothed at the same amount. It is observed
that the stationary filters are not effective in removing

streaking artifacts. The image is already blurry, while the
streaking artifacts are still there.
Figure 9 shows 5 curves according to the relationship

Eq. (5). The 5 curves correspond to the 5 cases with dif-
ferent b values as shown in Figs. 2, 3, 4, 5, 10, respect-

ively. The horizontal axis represents the normalized
projection value, and the vertical axis represents the size
σh of the kernel h.
When the parameter b is small such as 0.5, the kernel

size σh increases gently with the projection p(t,θ). When

Fig. 2 FBP reconstruction of three image slices using a nonstationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 2.5, b = 4, and
c = −2.49975. Left to Right: Slice 1, Slice 32, and Slice 64

Fig. 3 FBP reconstruction of three image slices using a nonstationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 2.5, b = 3, and
c = − 2.49975. Left to Right: Slice 1, Slice 32, and Slice 64

Fig. 4 FBP reconstruction of three image slices using a nonstationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 2.5, b = 2, and
c = − 2.49975. Left to Right: Slice 1, Slice 32, and Slice 64
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the parameter b is large such as 4, the kernel size σh
increases dramatically with the projection p(t,θ). Intui-
tively speaking, the streaking artifacts are caused by a
few projections with the largest values, whose rays
pass through both arms. Using a large parameter b

(e.g., b = 2) effectively separates the projections with
large values from other projections. Only those large
projection values are smoothed, while other smaller
projection values are almost unchanged. The overall
image resolution is unchanged.

The effectiveness of artifact removal of the pro-
posed spatially variant filter can by assessed by visual
inspection of the reconstructed images. It can also
be evaluated by a numerical figure-of-merit, called
artifact index, which is empirically developed and ex-

plained as follows.
The artifact index compares a low-dose image

against its corresponding regular-dose image using
the following steps. Step 1: Obtain a pair the recon-
structed images, one with regular-dose data and the

Fig. 5 FBP reconstruction of three image slices using a nonstationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 2.5, b = 1, and
c = − 2.49975. Left to Right: Slice 1, Slice 32, and Slice 64

Fig. 6 FBP reconstruction of three image slices using a nonstationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 2.5, b = 0.5, and
c = − 2.49975. Left to Right: Slice 1, Slice 32, and Slice 64

Fig. 7 FBP reconstruction of three image slices using a stationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 0 and c = 2. Left to
Right: Slice 1, Slice 32, and Slice 64
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other one with low-dose data. Step 2: Extract the
edges (i.e., features) of these images using the Canny
method. We used Matlab’s built-in function edge
(Image, ‘Canny’) to accomplish this step. Step 3:
Evaluate the difference image of these two edge im-
ages. Step 4: Evaluate the element-by-element square
of the error image. Step 5: Small isolated dot-like fea-
tures are removed by using Matlab’s built-in function
bwareaopen (Image, 70). Step 6: Find the artifact
index as the total sum of the image values in proc-
essed image from Step 5. The results of the artifact
index values for reconstructed images are summarized
in Table 1. A smaller artifact index may imply fewer
artifacts being detected from the low-dose image.

Conclusions
The proposed pre-filter is designed for the FBP algo-
rithm, aiming to reduce the photon starvation streaking
artifacts. This is a linear filter as suggested by Eq. (2). It
has a convolution lookalike form, with similar computa-
tional complexity as convolution.
The most important property of the proposed filter is

its nonstationary characteristic, which allows the filter to
smooth the data with specified range of values. As a re-
sult, some streaking artifacts can be reduced. Stationary
filters do not have this ability.
The proposed spatially variant filter is a lowpass filter

with a small kernel span. The low frequency compo-
nents are almost not affected. However, at the same time

Fig. 8 FBP reconstruction of three image slices using a stationary Gaussian pre-filter h whose σh is defined in Eq. (5) with a = 0 and c = 4. Left to
Right: Slice 1, Slice 32, and Slice 64

Fig. 9 The functional relationship Eq. (5) of 5 cases as in Figs. 2 to 5, 10, respectively. The horizontal axis represents the normalized projection
value, and the vertical axis represents the size σh of the kernel h
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of suppressing high frequency artifacts at certain views,
some high frequency contrasts are suppressed as well.
The low frequency image quantitation is almost not af-
fected, but some high frequency details may get lost.
A mathematical analysis would conclude that the opti-

mal value of parameter b in Eq. (5) should be 0.5 be-
cause it matches the noise model of the transmission
tomography. However, computer simulations reveal that
this is not the case and the b value should be larger than
0.5 to be effective. We still do not understand why it is
more effective than the ‘correct’ value of b = 0.5. A previ-
ous paper published in 2016 [14] presented many exam-
ples to illustrate this un-explained phenomenon and
concluded that the optimal parameter depends on the
object and the image contrast. Therefore, there is no
universal optimal parameter. The so-called ‘correct’
weighting function is sub-optimal.
A low-dose CT study is used to test the feasibility of

the proposed pre-filter. The relationship between the
kernel size and the noise variance is not uniquely deter-
mined. The model (5) is only one functional form that
can be utilized. The user is encouraged to adopt other
forms to label the undesired projection values to be
smoothed out.
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