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Abstract

In this paper, we propose an efficient computational method for converting local coordinates to world coordinates
using specially structured coordinate data. The problem in question is the computation of world coordinates of an
object throughout a motion, assuming that we only know the changing coordinates of some fixed surrounding
reference points in the local coordinate system of the object. The proposed method is based on barycentric
coordinates; by taking the aforementioned static positions as the vertices of a polyhedron, we can specify the
coordinates of the object in each step with the help of barycentric coordinates. This approach can significantly help
us to achieve more accurate results than by using other possible methods. In the paper, we describe the problem
and barycentric coordinate-based solution in detail. We then compare the barycentric method with a technique
based on transformation matrices, which we also tested for solving our problem. We also present various diagrams
that demonstrate the efficiency of our proposed approach in terms of precision and performance.
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Introduction
Conversion between coordinate systems and applying
coordinate transformations are common techniques
for solving different scientific problems. This general
method is efficiently used in various fields, such as
computer graphics, image processing [1], geometric
processing [2], physics [3], and geoinformatics [4, 5].
In this paper, we propose a method for dealing with
a similar problem, where conducting conversions be-
tween different coordinate systems is also necessary.
To illustrate our problem, let us assume we have a

motion sequence described by each of its steps. What
we are interested in is the global position of the moving
object in each step. Object determination is a common
problem in different scientific fields as well; however,
there may be cases where the available information is
limited or special in some way [6–9]. In our case, we

assume that the given data is special in that only a few
reference points (and their changing coordinates), which
are located in the surroundings of the moving object
and defined in its local coordinate system, are known.
To obtain the desired object positioning, we must deter-
mine the coordinates of the main object for every step by
converting from the object’s local coordinate system to the
global one using the information at our disposal. There is
also a need for analyzing the provided precision, which is
essential in different object locating applications [10, 11].
To this end, we propose a computational method that

is capable of obtaining the required motion data using
the information outlined above. The essence of the
method lies in the use of barycentric coordinates related
to the surrounding reference points. Barycentric coordi-
nates are widely used in the field of computer graphics.
They have many applications, including interpolation
and deformation [12–14], character articulation [15],
and mesh parameterization [16, 17]. Their utility has
been proved in other fields besides computer graphics,
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such as sensor networks [8] and robot localization, as a
part of the trilateration method [6, 7].
In the next section, we present the problem in detail

by describing the data concept. Then, we continue with
a brief overview of barycentric coordinates along with a
thorough demonstration of our proposed method. After
that, we evaluate our method by comparing it with other
possible methods, and the same section shows the
corresponding error metrics for their precision and
performance as well. Lastly, the paper is concluded with
a summary of our results.

Methods
Problem definition
Our main problem is given by the concept of data
creation and what kind of information it provides us. As
we mentioned above, it contains a motion series that is
described by the environment of the moving object. This
supposition implies the task of locating this object in the
global coordinate system based on its environment.
In the data sequence, each step contains information

that is described only by itself. At every step of the
motion, we only know the changed coordinates of the
surrounding reference points with respect to the local
coordinate system of the main object. Nevertheless, our
goal is to compute the (changing) world coordinates of
the main object, assuming that the reference points
remain fixed in the global system. We also know that
the main object starts its motion at the origin of the
global coordinate system. Of course, if we consider its
local coordinates, the object plays the role of the origin
in every step.
In other words, the motion is defined by some base

points in the surroundings of the object. Knowing that
these reference points are stationary, we can rely on
them to retrieve the position of our observed object.
The structure of the data for a motion step in the

sequence is built up as follows: it contains a step identifier
and an object array that holds four objects. For each
object, the array stores the corresponding relative position
in the current step. There is no additional information
contained in the data.

Barycentric approach
Barycentric coordinates
Barycentric coordinates have the capability of giving the
position of an arbitrary point based on some reference
points. We can get this mentioned position by taking an
adequately weighted sum of the said references. In the
following, we present an example case for this in the
plane.
Based on ref. [18], we would like to highlight the

main characteristics of barycentric coordinates in the
three-dimensional case.

Let us consider an arbitrary given tetrahedron with ver-
tices a, b, c, and d. Any point on the edge between a and
b can be obtained as (1 – k)a + kb, where 0 ≤ k ≤ 1. Let us
assume that point r is considered in the mentioned form.
Then—employed the previously used technique—any

point q of the segment of r and c can be determined as
(1 – l)r + lc, where 0 ≤ l ≤ 1.
Similarly, any point p of the segment of q and d can be

calculated as (1 – m)q + md, where 0 ≤m ≤ 1. Now, let us
express p with k, l, m, and the points of the tetrahedron.
From the previously mentioned equations, we get

p ¼ ð1 −mÞqþmd

¼ ð1 −mÞðð1 − lÞrþ lcÞ þmd

¼ ð1 −mÞð1 − lÞrþ ð1 −mÞlcþmd

¼ ð1 −mÞð1 − lÞrþ ðl − lmÞcþmd

¼ ð1 −m − l þ lmÞðð1 − kÞaþ kbÞ þ ðl − lmÞcþmd

¼ ð1 −m − l þ lm − k þ kmþ kl − klmÞa
þ ðk − km − kl þ klmÞbþ ðl − lmÞcþmd

Let us introduce the following notations:

t≔1 − k − l −mþ lmþ kmþ kl − klm;
u≔k − km − kl þ klm;
v≔l − lm;
w≔m:

Using the notations introduced above, p can be writ-
ten as p = ta + ub + vc + wd, and it is easy to see that
t + u + v + w = 1. The t, u, v, and w numbers are called
the barycentric coordinates of point p, and by using
them, the point can be calculated as a weighted sum of
a, b, c, and d. As an example, see Fig. 1. With the pro-
posed calculation based on the intervals between 0 and
1, we can describe only the inner part of the tetrahedron,
but this idea can be generalized to any positions in the
three-dimensional space.

Determining global coordinates using barycentric
coordinates
As we pointed out earlier, our computation is based on
the use of barycentric coordinates. To use the barycen-
tric approach as a solution to our problem, it is essential
to be able to calculate the barycentric coordinates of our
moving object with respect to the four fixed reference
positions-which surround our moving one-in its local
coordinate system.
First, we introduce some notations. Let us assume that

xi,k, yi,k, and zi,k (i ∈ {1, 2, 3, 4}) are the x, y, and z coordi-
nates, respectively, of the i-th surrounding reference
point in the k-th step. Furthermore, wi,k (i ∈ {1, 2, 3, 4})
will denote the barycentric coordinates of the main ob-
ject also in the k-th step regarding this reference system.
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We also know that in this part of our computation,
everything is described in the local coordinate system of
the main object. Thus, the main object is always located
at the origin and has (0, 0, 0) coordinates.
Based on the method suggested on page 46 in ref. [19]

for the two-dimensional case, we can reach the desired
barycentric coordinates as follows.

Considering that
P4

i¼1wi;k ¼ 1, w4,k can be expressed
using the other weights as

w4;k ¼ 1 −
X3

i¼1

wi;k ð1Þ

Using this—and also the fact that the observed object’s
local coordinates are (0, 0, 0) in every step—we can get
the following system of equations for the k-th step:

X3

i¼1

wi;k � xi;k þ ð1 −
X3

i¼1

wi;kÞ � x4;k ¼ 0

X3

i¼1

wi;k � yi;k þ ð1 −
X3

i¼1

wi;kÞ � y4;k ¼ 0

X3

i¼1

wi;k � zi;k þ ð1 −
X3

i¼1

wi;kÞ � z4;k ¼ 0

ð2Þ

The equation system (2) trivially leads us to the
following:

X3

i¼1

wi;k � ðxi;k − x4;kÞ ¼ − x4;k

X3

i¼1

wi;k � ðyi;k − y4;kÞ ¼ − y4;k

X3

i¼1

wi;k � ðzi;k − z4;kÞ ¼ − z4;k

ð3Þ

which can also be written in matrix form as

Ak � wk ¼ bk ð4Þ
where

Ak :¼

 
x1;k − x4;k x2;k − x4;k x3;k − x4;k

y1;k − y4;k y2;k − y4;k y3;k − y4;k
z1;k − z4;k z2;k − z4;k z3;k − z4;k

!

wk :¼

 
w1;k

w2;k

w3;k

!
; bk :¼ −

 
x4;k
y4;k
z4;k

!

From the matrix form above, we can compute the wi, k

weights as

wk ¼ A − 1
k � bk ð5Þ

Based on Eq. (1), we can easily calculate w4,k with vec-
tor operations as

w4;k ¼ 1 − 〈wk ; 1 〉 ð6Þ

where 〈,〉 denotes the dot product, and 1 is the (1 1 1)T

vector.
So far, we have only found the barycentric coordinates

of 0 in the local coordinate system of the actual step.
Now, we apply these barycentric coordinates to obtain
the position of the moving object for the current step in
the global coordinate system.
To get the global coordinates of our object, we need to

form a static reference basis in the global coordinate
system. We form this basis by the position vectors of the
four references from the very first step. Considering
them as the four vertices of a tetrahedron, they can be
used with the barycentric coordinates derived in the
actual step to compute the world coordinates of the
searched position.
We assumed that the moving object starts its path at

the origin of the global coordinate system. Therefore, at
the start of the motion, the coordinates of the four
reference points are the same as in the local one. Using
this fact, we can consider the calculated barycentric
coordinates from every step and use them as weights for
the starting reference positions.

Fig. 1 Barycentric coordinates of point p inside the tetrahedron
abcd. In the figure, r = (1 – 0.4)a + 0.4b, q = (1 – 0.5)r + 0.5c, and
p = (1 – 0.6q) + 0.6d. Using the computation method proposed
below to obtain t, u, v, and w barycentric coordinates of p, we get
that p = 0.12a + 0.08b + 0.2c + 0.6d
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Let us collect the barycentric coordinates from the
k-th step into vector ŵk , i.e.,

ŵk :¼ðw1;k w2;k w3;k w4;kÞT

Let us assume that Gi is the matrix containing the
local coordinates of the reference positions in the follow-
ing form:

Gi :¼

 
x1;i x2;i x3;i x4;i

y1;i y2;i y3;i y4;i
z1;i z2;i z3;i z4;i

!
ð7Þ

If we use this notation for the start of the movement,
the global coordinates of the reference positions can be
collected in G1, and they are the same as their local co-
ordinates at the beginning.
Now we have all necessary data to obtain the desired

solution—the global coordinates in the actual step—as
the weighted sum of the reference positions. If these co-
ordinates are denoted by xk, yk, and zk, they can be cal-
culated as follows:
 

xk

yk
zk

!
¼ G1 � ŵk ð8Þ

Transformation matrix-based alternative
When trying to determine a suitable way to retrieve the
required coordinates, we ran some tests with a few other
methods. However, the huge number of motion steps re-
sulted in computational errors with increasing tenden-
cies throughout the entire simulation in most cases.
The most promising basic method could be using

matrix transformations to get the proper coordinates. In
each step, we considered the four reference positions
from two consecutive steps from our motion data (the
previous and current ones) and calculated the matrix
that transforms the first set of positions into the second
one. We obtained the final transformation by multiply-
ing the previous matrix (computed using the same algo-
rithm) with the current one and used the result to
retrieve the desired object location for the current step.
Using the notation introduced in Eq. (7), we would

like to find a matrix for which the following is true:

Tkþ1 � Gk ¼ Gkþ1 ð9Þ
i.e., Tk + 1 is the transformation matrix that transforms

the reference positions from the k-th step to the k + 1-
th. Therefore, we can compute the transformation matri-
ces in the following way:

Tkþ1 ¼ Gkþ1 � G − 1
k ð10Þ

Based on this formulation and given our assumption
that the object is initially located at the origin, we can
obtain the position of the observed object in the i-th
motion step by accumulating all of the transformation
matrices until that step. Formally written, the desired
position of the object is

ð
Yi

k¼1

T − 1
k Þ � ð0 0 0 1ÞT ð11Þ

Equation (11) can be rearranged to have only one in-
verse matrix calculation in the following way:

ð
Yi − 1

k¼0

Ti − kÞ
− 1

� ð0 0 0 1ÞT ð12Þ

Results
To have ground-truth reference information to compare
our results with and to have a measure for obtaining the
accuracy of the two methods, we generated some test
data sequences describing different movement types of
the object. These synthetic sequences differ in the move-
ment alignment of the object for analyzing the impact of
each motion type on the approximation errors.
Here, we present four unique test cases with various

translation and rotation configurations. In the first case,
the object moves in a seldom-changing direction with
no additional rotation. Following this, the moving object
follows a spiral path introduced along the x-axis. For the
third case, we further varied the first test case having a
nearly constant moving direction. We introduced per-
step random rotations along the x and y axes. Finally, we
kept the random rotations from the previous test case
but randomized the translation vectors in each step too.
For each test case, we collected the absolute errors of
the matrix method and barycentric approach as the
distance between the results provided by each method
and the ground-truth information. We used these
numbers as performance indicators of the individual test
approaches. We summarize the resulting error metrics
in Fig. 2.

Precision
As demonstrated by our results, the error produced by
the matrix transformation method is several orders of
magnitude larger than that of our proposed algorithm.
Because barycentric coordinates yield an error of
approximately 10− 6, it is difficult to visualize the error
on the same scale as the matrix transformation error.
For this reason, the error of the barycentric method may
appear as zero in some places, but the magnitude differ-
ence between the two methods is clearly noticeable.
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In the case of periodic movement, where the object
had no rotation and seldom changed its moving direc-
tion, we experienced a nearly constant error amount
with a magnitude of 10− 4 (Fig. 2a). In the case when the
object was moving on a spiral path with and without
random rotations (Fig. 2b and c), the error was first rela-
tively unified at a magnitude of 10− 5 with little growth,
eventually reaching a magnitude of 10− 4. This means
that the matrix method produced acceptable results. The
next test case, however, shows a different view. In this
case, the object moves in randomly generated directions
with per-step random rotations (Fig. 2d). Such a compli-
cated scenario resulted in larger-scale errors having a
firmly rising tendency, showing a growing precision
difference between the barycentric method and matrix
transformations.

Performance
We also conducted performance measurements for
the two methods. The results show a clear gap
between the barycentric approach and the method

using matrix transformations. We had three runs for
the runtime measurement, containing 10000, 100000,
and 200000 steps. We measured the times for the
process of calculating the position of the main object
for all motion steps.
The results of different cases show a rising tendency

for the difference between the runtime of the two
methods. With 10000 and 200000 steps, the program
run gives us a nearly six millisecond and 240 millisec-
ond difference, respectively. In our case, this means
more than 200% runtime growth (see the exact values
in Table 1). We ran the performance tests on a dual-
core Intel Core i5-3230M 2.60GHz processor.

Fig. 2 Precision measurements. The blue line marks the precision of the approach based on barycentric coordinates, while the red line marks the
precision of the method using matrix transformations. Each measurement differs in the type of movement: a seldom-changing constant direction, b
spiral movement, c constant direction with randomly generated rotations, and d randomly generated rotations and translation vectors

Table 1 Performance measurements of the barycentric
approach and matrix method

Step count Barycentric approach Matrix method

10000 14.5 ms 20.7 ms

100000 54.9 ms 85.9 ms

200000 101.4 ms 343.5 ms
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Discussion and future work
In this paper, we proposed a method to obtain the actual
position of an object using some reference points from its
surroundings. Our computation builds upon barycentric
coordinates and uses the available points as references to
obtain the movement of the observed object in the global
coordinate system.
The strength of the barycentric method lies in the fact

that information from earlier motion steps is seldom
used, leading to reduced error propagation in the
system. On the other hand, as mentioned before, in
three dimensions, four reference points are required to
retrieve the barycentric coordinates of a point. We had
four guaranteed fixed points that we could use as
references for the barycentric coordinates, which gave a
perfect basis for designing the proposed method.
As the self-localization problem is always dependent

on the actual environment, it always requires special
solutions that account for the available information or
that are measurable with disposable devices. Thomas
outlined the problem of robot localization in their work
[6], from which a possible use case can be derived. As a
robot moves, its sensors may collect coordinate informa-
tion about the surrounding static objects relative to
itself; this results in a data format from which the
movement-dependent localization problem can be easily
solved using the method proposed in this paper.
Additionally, the suggested barycentric method can

also solve the inverse of the problem presented in ref.
[20]. If we can find static anchors in the surroundings of
a moving pedestrian such that we can determine the
positions of the anchors relative to them, one could
determine the global position of the pedestrian using
our proposed algorithm.
Lastly, the field of scientific visualization is another

great use case for the proposed barycentric position
determination algorithm. We can mainly imagine the
algorithm helping with the visualization and animation
of object motion data originating from specialized,
domain-specific simulation systems.
Considering the results presented in this paper, we

plan to work on the applications of the barycentric
method in motion data from simulations of an ongoing
biological study. We would also like to examine and
resolve special cases, such as possible changes in the
current fixed environment. We also plan to evaluate the
computations in more detail by applying new special
cases and a homogeneous coordinates-based computa-
tion approach [21] and making further precision
measurements of them.
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