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Abstract

One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by
Massachusetts Institute of Technology researchers in theMoral Machine Experiment. To solve such dilemmas, the MIT
researchers used a classic statistical method known as the hierarchical Bayesian (HB) model. This paper builds upon
previous work for modeling moral decision making, applies a deep learning method to learn human ethics in this
context, and compares it to the HB approach. These methods were tested to predict moral decisions of simulated
populations ofMoral Machine participants. Overall, test results indicate that deep neural networks can be effective in
learning the group morality of a population through observation, and outperform the Bayesian model in the cases of
model mismatches.
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Introduction
With the rapid development toward automation, future
reliance on artificial intelligence (AI) for everyday tasks is
clear. Often embedded within these tasks are small moral
decisions: for example, is violating a minor traffic law jus-
tified when it saves the time of others? While humans
take these small ethical decisions for granted, society must
properly equip AI products with moral compasses if we
are to entrust machines even with small daily tasks. Fur-
thermore, confidence in an AI’s ability to make sensible
moral decisions is key to winning public acceptance of
such systems.
Public acceptance of AI as responsible moral agents

is one of the greatest obstacles facing automation
and machine learning. Bigman and Gray [1] highlights
that people have shown distinct aversion to entrust-
ing machines with ethical decisions in multiple studies,
despite the fact that AI has demonstrated superior judge-
ment to humans in certain domains. Other research and
surveys indicate that a person’s previous exposure to
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machine-made decisions plays a crucial role in their confi-
dence in ethical AI [2]. Formulating and demonstrating an
easily applicable approach to programming moral agents
is the first step in earning public trust in this domain.
Incorporating moral sensibility into machines remains

challenging, as it is difficult to derive a quantita-
tive model for objectively determining moral decisions.
Current research in AI moral decision making often the-
orizes abstract and general approaches to training moral
agents [3, 4] For example, Shaw et al. [4] proposes a
machine learning framework where a group of statisti-
cally trained models determine a moral action based on
each individual model’s decision, and the confidence each
model has in the morality of other models [4]. Still, reduc-
ing complex moral scenarios to a form that a framework
can easily digest is obtuse.
As withmany problems, researchers can find inspiration

in human cognitive abilities, including moral determina-
tion. English philosopher Jeremy Bentham theorized that
individuals choose actions that yield the greatest social
utility when faced with ethical dilemmas [5]. Research in
universal moral grammar has supported this notion, addi-
tionally noting that the moral value of a decision also
depends on the context and actions an agent must take
within that decision, and not just the net result [6]. As
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such, it may be possible to model ethical decisions based
upon the social utility of each option within a decision.
In this paper, we investigate a deep learning based moral
decision model, taking a hypothetical autonomous vehicle
dilemma as an example.

Themoral machine experiment
One scenario relevant to ethical modeling with social
utility is the imminent crash of a self-driving vehicle: in
this hypothetical situation, an autonomous vehicle with a
catastrophic brake failure must decide between killing one
of two distinct groups of people. This scenario is a suitable
starting point for discussing ethical AI decisionmaking, as
it has been investigated extensively in the Moral Machine
Experiment [7]. This experiment surveyed thousands of
people worldwide for their preferences in autonomous
vehicle ethical dilemmas [7]. In any given instance, a par-
ticipant would be presented with an unwinnable scenario
in which only one of two groups of people could sur-
vive (see Fig. 1). The survey aggregated answers based
on region and evaluated the moral values that societies
generally place on different abstract dimensions, such as
age, social status, law adherence, and gender. Observ-
ing the data and attempting to transfer scenarios into
comparative costs based on abstract values is the first
step in creating a model that can ethically make these
decisions.

Hierarchical Bayesian modeling for moral decision making
Before describing a deep learning model, it is necessary
to both credit and summarize the work by Kim, et al.
in A Computational Model of Commonsense Moral Deci-
sion Making [9]. This paper observes the same scenario
from the Moral Machine Experiment, and models human
moral decisions as a random process based on the per-
ceived social utilities between options in a scenario. Each
autonomous vehicle scenario contains two options (y =
0, 1), and option y can be characterized by vector θy. The
characters within θy hold various features (such as male,
human, doctor, young, etc.). The total features of θy can be
found after applying a linear transformation λ = F(θ) =
Aθ , where λ is the sum of features in θ . Figure 2 shows the
linear transform A used in Kim, et al. [9].
Kim, et al. models human decisions in these scenarios as

a comparison of perceived social utilities. The social utility
u of option i is calculated as follows:

u (θi) = w�F (θi) (1)

where a vector w is an individual’s set of moral abstract
weights for each feature [9]. For each scenario containing
two options, i = 0, 1 (non-intervention and interven-
tion respectively), the probability that the individual will
choose the intervention function is modeled as [9]

Fig. 1Moral Machine Example: Example screenshot of a scenario from a Moral Machine scenario [8]. The participant must decide the more ethical
course of action for the self-driving vehicle: swerving would kill all vehicle passengers (right), while maintaining the course would result in the death
of all pedestrians (left) [8]
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Fig. 2 Feature Transform: Binary transformation matrix A used in Kim, et al., which converts a set of character traits θ into quantifiable features [9]

P(Y = 1|θ0,1) = 1
1 + e−(u(θ1)−u(θ0))

(2)

At the heart of this modeling, the w vector for a par-
ticipant quantifies the abstract moral values that the indi-
vidual holds for different features (for example, the value

of the 4th vector element corresponds to the social value
that individual places on youth). Furthermore, Kim, et.
al assume that the distribution of these moral values for
a culture can be characterized as a multivariate normal
distribution, where the mean wg represents the group

Fig. 3Moral Principle Mean: Mean value for all underlying distributions of the moral principle vector w
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average, and the covariance matrix �g represent in-group
variances and co-dependence of values (for example, value
for pregnancy are correlated with value for infancy).

wi ∼ Normal
(
wg ,�g) (3)

Assuming this underlying model, Kim, et. al proposed a
Hierarchical Bayesianmodel, which observes participants’
decisions in the Moral Machine experiment, and predicts
individual decisions by inferring underlying moral value
set wi for each individual.

Creating a model without assuming an underlying normal
distribution
The Hierarchical Bayesian model proves valuable in pre-
dicting decisions in the Moral Machine experiment [9].
Its efficacy, however, relies upon the assumption that the
modeled abstract values are normally distributed. Indeed,
many moral values result from a linear summation of
other values, and thus will tend toward a normal distri-
bution by the Central Limit Theorem. It is also possible,
however, that other moral values are a more complex,
non-linear function of other factors. Thus, it may not
always be safe to assume an underlying normal distri-
bution of moral values pertaining to a specific ethical
dilemma.
In this paper, we propose the use of a deep neural net-

work for predicting individual moral outcomes. While
deep neural networks generally require sufficient amounts
of training data, they do not require any prior assump-
tions regarding the decision process or population dis-
tributions of moral principles. Rather, a neural network

implicitly learns these aspects through observation. In the
following work, we train a deep neural network to pre-
dict individual moral decisions in the autonomous vehicle
scenario, and compare its performance to that of a Hierar-
chical Bayesian model. We simulate participant decisions
by maintaining the same decision-making process from
Kim, et al. [9], but vary the underlying distribution of
w, representing different possible distributions of moral
principles.

Methods
Three models are considered for predicting individual
moral decisions from Moral Machine scenarios: a deep
learning model, a Bayesian model in which an underlying
distribution was assumed, and a likelihood model where
no distribution assumptions are made. These models were
tested with simulated Moral Machine survey data, which
were generated with various underlying distributions of
moral values.

Participant simulation
Each virtual participant is characterized by their personal
moral vector w, sampled from a population’s multivar-
iate distribution. To create a normally distributed dataset,
participants were i.i.d. sampled per Eq. 3, where group
mean wg and covariance �g are specified in Figs. 3 and
4 respectively. These parameters were selected roughly
based upon the inferred distribution parameters for Dan-
ish participants in Kim, et al. [9].
Then, five generalized Gaussian multivariate distribu-

tions were created, with the probability density function
(PDF) f (x):

Fig. 4Moral Principle Covariance: Covariance matrix for all underlying distributions of the moral principle vector w
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Table 1 κ values generated for five non-gaussian distributions

| k |= 0.5 1 1.5 2 2.5

Intervene 0.77 1.5 -0.37 -0.69 2.61

Male 0.25 -1.66 -1.28 1.24 2.05

Female -0.8 0.52 0 -0.8 1.59

Young 0.34 -0.76 -1.35 3.79 -4.59

Old 0.01 -0.1 1.99 -1.84 4.19

Infancy -0.15 -0.87 -1.84 -1.05 1.1

Pregnancy -0.09 -0.23 -2.31 3.45 -2.68

Large 0.51 -1.95 -2.86 3.52 -4.36

Fit 0.59 1.01 -0.86 1.57 0.88

Executive 0.76 1.05 -1.82 -1.31 4.55

Doctor -0.53 -0.2 1.17 2.86 1.2

Homeless 0.88 -1.33 2.82 2.4 1.58

Criminal -0.34 0.9 2.47 -2.14 4.11

Human 0.66 -0.88 -1.78 2.82 1.7

Non-Human 0.59 -0.42 -1.34 1.43 -3.88

Passenger 0.84 -1.95 0.05 1.07 1.26

Legal -0.07 -1.55 -1.38 0.73 -1.67

Illegal 0.59 -1.31 1.17 -2.9 -1.9

f (x) = φ(y)
α − κ (x − ξ)

; (4)

y = −
ln

(
1 − κ(x−ξ)

α

)

κ

where φ is the standard normal PDF function, κ , α, and
ξ are the shape parameter, scale parameter, and median
respectively. The mean and variance for this distribution
are as follows [10]:

μ = ξ − α

κ

(
eκ

2/2−1
)

(5)

σ 2 = α2

κ2 e
κ2

(
eκ

2 − 1
)

(6)

Each of these distributions was sampled by first sam-
pling the previous normal distribution. Then, each ele-
ment i in sample w was transformed to a target non-
Gaussian distribution with the equation:

ŵi = αi
κi

(
1 − e−κi

wi−μi
σi + ξi

)
(7)

μi and σi are the marginal mean and standard devia-
tion respectively for themoral component value i. κ values
for a target distribution were generated (see Table 1). The
scale parameter αi and median ξi were then calculated

Fig. 5 Distribution Transform: Histograms of marginal distributions of the ’Human’ value for the normal dataset (left) and one of the transformed
datasets (right)
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based upon κi with the following equations, ensuring that
the mean and covariance of the distribution are preserved
during the transformation:

αi = | κiσi |
√
eκ2

(
eκ2 − 1

) (8)

ξi = μi + αi
κi

(
e

κ2i
2 − 1

)
(9)

The κ values for the five non-Gaussian distributions
were randomly generated such that each distribution dis-
played a different degree of skew, as evident by each
distribution’s approximate average κ magnitude. Each dis-
tribution was i.i.d. sampled to create 3,000 participant
datasets. For each dataset, 1,000 of these samples was set
aside as a test set. An example of the transform’s effect on
a marginal distribution is shown in Fig. 5.

Scenario and decision simulation
Similar to the actual Moral Machine experiment, each of
the simulated participants in each group was given thir-
teen moral machine scenarios. The parameters θ0, θ1 of
each scenario were randomly generated. Each option ran-
domly has 0-5 people present, with a 75% chance that each
option in one scenario contains an equal number of people
(this is done to avoid trivial comparisons, such as 2 people
vs 12, and having all decisions be completely dominated
by the total number of people in either option). Certain
values were preset or selected as a binary to ensure that
scenarios were feasible within the Moral Machine frame-
work (for example, the ’Intervene’ value was always 1 for
θ1 and 0 for θ0). It should be noted that the parameter gen-
eration of each scenario is largely random, while survey
questions in the Moral Machine experiment are mostly
targeted towards isolating a single factor (gender, social
status, etc.) [7].
The decisions from each participant were modeled as

the random process described with Eqs. 1 and 2, and as
outlined in Kim, et al. [9]. In separate tests, decisions were
simulated with a deterministic version of Eq. 2, in which
the maximum likelihood decision was always chosen (dis-
cussed in “Results and discussions” section).

Model creation and testing
A hierarchical Bayesian (HB), maximum likelihood (ML),
and deep learning (DL) model for predicting moral
decisions were created and tested with representative
participant distributions. The key details are described in
the following.

Hierarchical Bayesianmodel
For participant i, who handled scenarios 
i = [


1
i , ...
N

i
]

with decisions Yi = [
y1i , ...yNi

]
, the HB model maximized

the posterior probability of wi, and used this estimate to

predict other scenario decisions. The Bayesian model is
based on the following equations from Kim et al. [9]:

P
(
wi,wg ,�g) ∝ P (
i,Yi|wi)P (wi|wg ,�g) (10)

P (wg)P (�g)

with likelihood:

P (
i,Yi|wi) =
N∏

k=1
P

(
yki = 1|
k

i

)yki
(

P
(
yki = 0|
k

i

)(
1−yki

))

(11)

This model was given the exact wg and �g , but always
assumed an underlying normal distribution of w; i.e.,
P (wg) = P(�g) = 1,P(wi|wg ,�g) ∝ φ(wi) where φ

is the normal multivariate pdf with mean and covariance
wg ,�g . Thus, this model represents a best scenario where
a Bayesian model infers the distribution hyperparameters
optimally, but assumes a normal underlying distribution,
potentially mismatching the true underlying distribution.

Maximum likelihoodmodel
The ML model is similar to the HB, but does not assume
any information regarding the underlying distribution.
Thus, for each individual, ML estimates for wi by maxi-
mizing the likelihood in Eq. 10.

Deep learningmodel
Unlike the other two models, the DL model does not
explicitly estimate any moral principle vector w. Rather,
it directly predicts a decision y from a vector of sce-
nario parameters θ . Scenario i is input into the network
as a length 24 vector reflecting 
i

1 and 
i
0. The model

architecture consists of a sequence of densely connected
layers with batch normalization and ReLU or sigmoid
activation (Fig. 6). Binary cross entropy is used as a loss
function. A learning rate of 5e−4 with a decay rate of
0.1 was used for training. For each distribution, the net-
work was trained with sample sizes of 25, 50, 200, 500,
1,000, and 2,000 participants (per simulated participant,
8 questions were used for training, and 5 were used for
validation). Finally, testing was conducted on the test
set for each distribution, in which predictions from five
test questions per simulated participant were evaluated.
Initially, the neural network underwent an ’individual fine-
tune’ in which the network parameters were briefly fine-
tuned with eight questions worth of individual-specific
data, but this practice was discarded, as it was found to
have no significant effect on performance (discussed in
“Results and discussions” section).

Generation/Testing on generalized data
To generalize from the data found in the Moral Machine
Experiment, an abstract dilemma in the same decision
framework was also simulated and tested. This dilemma
arbitrarily featured length 16 parameter vectors θ . To keep
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Fig. 6 Neural Network Architecture: Network architecture for the DL moral decision model. Batchnorm signifies a batch normalization layer

the dilemma as general as possible, the decision process
is still modeled as an evaluation of utility U(θ), but no
overlap between these parameters is assumed (i.e. the
transform A is simply the identity matrix without loss of
generality). The randomly generated wg , �g , and κ val-
ues used for this simulation are included in Figs. 7, 8 and
Table 2.

Results and discussions
Training of DL model
Figure 9 illustrates the accuracy of the DL model with
various training sample sizes and underlying distributions
of w. The approximate average of the absolute value of

the shape factor k correlates with the average skewness
of the underlying distribution denoted as ¯|k|, the average
skewness of underlying marginal distributions.
Unsurprisingly, the predictive accuracy increases with

greater training samples, as the model is given a greater
sample size to learn the distribution (although a size of
1,000 participants appears to perform slightly worse in
certain instances). What is slightly unanticipated is the
significant performance increase with increasing w dis-
tribution skewness. Despite all distributions sharing the
same mean and covariance, the network can better pre-
dict decisions from participants sampled from a more
skewed distribution. This is likely because an unskewed

Fig. 7 Generated Distribution Mean: Mean values of the principle vector w used to synthesize more general data
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Fig. 8 Generated Distribution Covariance: Covariance matrix of the principle vector w used to synthesize more general data

Gaussian distribution maximizes entropy for a fixed
variance. That is, distribution entropy may decrease with
increasing skew.
Within the results above, all model instances are

performance-limited by the stochastic nature of the deci-
sion making process in Eq. 2: even if a model implicitly
estimates moral values perfectly, the model can still only
predict the maximum likelihood decision, and not the
decision itself. To observe trends without this source of
randomness, models were also tested with data simu-
lated from a deterministic version of Eq. 2, where the
maximum likelihood decision was always selected (results
shown in Fig. 10). It can be seen that this change gen-
erally amplifies differences in performance between the
distributions.
Interestingly, fine-tuning the baseline DL model with 8

individual-specific samples did not significantly increase
the model’s performance. As such, the predictions of the
DL model are purely based on group observations, and
does not account for individual differences. This suggests
that in this instance, 8 individual-specific questions is
insufficient to benefit the predictive accuracy of the DL.
It is hypothesized that as in-group variances increase, the
need for effectively accounting for individual differences
would increase.

Comparison of model performances
Figure 11 compares of model performances over different
distributions. The ‘ground truth’ (GT) model is a predic-
tive model where individual values w are exactly known.

Thus, GT represents an upper limit the in predictive
performance, limited only by the inherent randomness
in Eq. 2. By comparison, Fig. 12 illustrates model per-
formances when decisions are based on the maximum
likelihood of Eq. 2 (GT accuracy = 100%).

Table 2 κ values generated for five non-Gaussian distributions
used to synthesize more general data

| k |= 0.5 1 1.5 2 2.5

Abstract value

1 -0.96 1.35 1.38 -2.52 3.79

2 0.64 1.45 -1.89 -1.9 0.93

3 -0.54 0.42 1.9 2.24 1.65

4 -0.33 0.65 1.27 -2.79 -1.5

5 0.08 0.89 -1.18 2.59 1.76

6 -0.41 -0.32 -0.82 2.8 -2.95

7 -0.06 -1.41 -1.7 1.01 2.65

8 0.7 1.4 1.97 -1.6 -2.12

9 -0.51 0.95 -0.65 -2.97 1.5

10 0.15 1.15 -1.35 1.05 2.67

11 0.87 -1.3 -0.8 -2.55 3.32

12 0.8 -1.07 1.92 2.1 -3.85

13 0.96 0.34 1.77 -0.92 -0.41

14 -0.28 1.4 1.7 2.1 3.92

15 0.49 -0.49 -1.96 1.91 3.95

16 0.23 -1.34 -1.54 -1.13 -2.98
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Fig. 9 DL Accuracy: DL model predictive accuracy with different sample sizes and underlying distributions of w. Various distributions for w are
denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the Gaussian distribution)

Fig. 10 DL Accuracy (Deterministic Decision Process): DL model predictive accuracy with different sample sizes and underlying distributions of w.
Various distributions for w are denoted by the approximate average of absolute shape factors k (

∣
∣k̄

∣
∣ = 0 denotes the Gaussian distribution) In this

test, decisions were simulated with the deterministic version of Eq. 2
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Fig. 11Model Performances: Comparison of model performances (DL trained with 2,000 participants involved) over datasets with various
underlying distributions of w, denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the Gaussian distribution). ‘GT’

denotes the predictive model in which the exact w for each participant is known

Fig. 12Model Performances (Deterministic Decision Process): Comparison of the model performances (DL trained with 2,000 participants involved)
over datasets with various underlying distributions of w, denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the

Gaussian distribution). In this test, decisions were simulated with the deterministic version of Eq. 2
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The results shown in Figs. 11 and 12 indicate that a
deep learning based model outperforms a hierarchical
Bayesian model when the underlying distribution of w
is skewed. On one hand, this is unsurprising, since the
HBM’s prior assumed a normally distributed w. How-
ever, it is also worth noting that DL was able to achieve
this accuracy without individual-specific data. Of course,
we do not suggest that individual-specific data is unim-
portant when modeling moral principles. It is logical
that individually-specific data would become increasingly
important for accurate modeling as in-group variance
increases. Indeed, we believe this implies a robust ability
for neural networks to learn underlying group trends and
decision processes, given enough training data. This abil-
ity is crucial, as the true distributions of population moral
values, as well as how they affect moral decisions, are
unknown.
In contrast to the DL model, the ML model’s perfor-

mance was mostly invariant of the underlying distribu-
tion of w because it based predictions only on limited,
individual-specific data, without any prior assumption.
This implies that the information used by the DL and ML
models are largely disjoint. As such, a model that effec-
tively leverages population information via deep learning
and limited individual-specific data via a maximum likeli-
hood could be superior.
It is also worth noting that the HBM still outper-

formed the ML model in all instances, indicating that

in this case a normal prior is still superior to no prior,
as this assumption is still close to the actual underlying
distribution. In fact, an increasing trend in the HBM
accuracy beyond ¯|k| = 0.5 suggests performance gains
due to a lower entropy in more skewed distributions
counteracted performance losses from an incorrect prior
assumption.

Further evaluations with generalized data
Models tested with the randomly generated abstract data
were also analyzed, assuming both a random and deter-
ministic decision process. Figures 13 and 14 plot the DL
predictive accuracy over training size with the abstract
data, while Figs. 15 and 16 compare the performances
for each model type with this dataset. Overall, the trends
seen in these experiments are consistent with the results
seen in the specific, autonomous vehicle scenario. This
demonstrates that these findings are not unique to the
specific population and scenario parameters found in the
autonomous vehicle instance.

Conclusion
Overall, we have demonstrated that a deep learning based
model can be effective in learning both moral values
and making moral decisions in a data-driven fashion.
Furthermore, the deep learning model is highly adaptive
to training examples, requiring no assumption regard-
ing the distribution of moral values in a population,

Fig. 13 DL Model Accuracy (Generated): DL model predictive accuracy with different sample sizes and underlying distributions of w, applied to the
generalized, abstract data. Various distributions for w are denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the

Gaussian distribution)
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Fig. 14 DL Model Accuracy (Generated; Deterministic Process): DL model predictive accuracy with different sample sizes and underlying
distributions of w, applied to the generalized, abstract data. Various distributions for w are denoted by the approximate average of absolute shape
factors k (

∣
∣k̄

∣
∣ = 0 denotes the Gaussian distribution) In this test, decisions were simulated with deterministic version of Eq. 2

or the decision process as a function of moral val-
ues. Given sufficient training data, this deep learning
approach has a distinct advantage, since underlying moral
value distributions and decision processes are generally
unknown. Based on our initial findings, we are confi-

dent that this work inspires much needed confidence in
deep neural networks for creating moral agents, given
the robust results that deep neural networks show in this
example. We are also confident that the parameteriza-
tion of a moral dilemma used in this experiment can

Fig. 15Model Performances (Generated): Comparison of model performances (DL trained with 2,000 participants involved) over datasets with
various underlying distributions of w, denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the Gaussian distribution),

as applied to the generalized, abstract data. ‘GT’ is the predictive model in which the exact w for each test participant is known
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Fig. 16Model Performances (Generated; Deterministic Process): Comparison of model performances (DL trained with 2,000 participants involved)
over datasets with various underlying distributions of w, denoted by the approximate average of absolute shape factors k (

∣∣k̄
∣∣ = 0 denotes the

Gaussian distribution), as applied to the generalized, abstract data. In this test, decisions were simulated with the deterministic version of Eq. 2

be applied to other, more complex moral scenarios and
network architectures.
Future work on machine learning of individual moral

decision making should apply the basic method to deep
learning with morality shown here to more complicated
models involving multiple AI agents, such as the approach
suggested in [4] Other research could also leverage a deep
learning model combined with a maximum likelihood
component to better extract both group trends and indi-
vidual specific information from limited data, or could
train deep neural networks to weight both moral and
legal considerations, which is an issue explored in [11].
We are particularly interested in two important applica-
tions of this proposed deep learning approach for decision
making: 1) democratized re-opening decisions in a pan-
demic situation, and 2) AI-aided consent processes in
healthcare. Further research opportunities are numerous.
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