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Functional near-infrared spectroscopy can ")
detect low-frequency hemodynamic
oscillations in the prefrontal cortex during
steady-state visual evoked potential-

inducing periodic facial expression stimuli
presentation
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Abstract

Brain oscillations are vital to cognitive functions, while disrupted oscillatory activity is linked to various brain
disorders. Although high-frequency neural oscillations (> 1 Hz) have been extensively studied in cognition, the
neural mechanisms underlying low-frequency hemodynamic oscillations (LFHO) < 1 Hz have not yet been fully
explored. One way to examine oscillatory neural dynamics is to use a facial expression (FE) paradigm to
induce steady-state visual evoked potentials (SSVEPs), which has been used in electroencephalography studies
of high-frequency brain oscillation activity. In this study, LFHO during SSVEP-inducing periodic flickering
stimuli presentation were inspected using functional near-infrared spectroscopy (fNIRS), in which
hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing
dynamic FEs flickering at 0.2 Hz. The fast Fourier analysis results demonstrated that the power exhibited
monochronic peaks at 0.2 Hz across all channels, indicating that the periodic events successfully elicited LFHO
in the prefrontal cortex. More importantly, measurement of LFHO can effectively distinguish the brain
activation difference between different cognitive conditions, with happy FE presentation showing greater
LFHO power than neutral FE presentation. These results demonstrate that stimuli flashing at a given
frequency can induce LFHO in the prefrontal cortex, which provides new insights into the cognitive
mechanisms involved in slow oscillation.
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Introduction

Brain oscillations are the instantiation of neuronal
rhythms resulting from the dynamic reciprocity between
intrinsic cellular and circuit properties [1], which can be
ubiquitously detected across various spatial and tem-
poral scales. Brain oscillations serve as a bridge linking
single neuron activity to cognition and behaviors [1], in
which the general functions of brain oscillators include
input selection and plasticity, binding cell assemblies,
consolidation, and a combination of learned information
[1]. Disrupted brain oscillations, however, are considered
a hallmark of numerous brain disorders, such as schizo-
phrenia and autism [2]. Therefore, a thorough under-
standing of brain oscillations is essential to better
decoding brain functions. The frequency band of brain
oscillations is between 0.05 and 500 Hz [1]. In particular,
high-frequency oscillations with frequencies over 1Hz
can be detected using electroencephalography (EEG) or
magnetoencephalography, indicating that different ca-
nonical frequency bands such as delta (1-4 Hz), theta (4-
8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (>
30Hz) correspond to distinct cognitive functions [2].
However, few studies have been carried out to inspect
the cognitive functions associated with low-frequency
oscillations, which generally fluctuate below 1 Hz. Mean-
while, low-frequency hemodynamic oscillations (LFHO)
have been exploited using functional magnetic resonance
imaging (fMRI) and functional near-infrared spectros-
copy (fNIRS) [3-5], in which the low-frequency oscilla-
tion signals can be directly examined using the fast
Fourier transform (FFT) of blood oxygenated (HbO) or
deoxygenated (HbR) hemoglobin concentration change
measurements. To date, it is still unclear whether neural
activity is the major contributor to LFHO, since some
studies also claim that LFHO in some frequency bands
could be physiological noise [3]. One way to capture
LFHO is to explore the role of brain oscillations in cog-
nition [6]. For example, visual stimulus tasks can elicit
steady-state visual evoked potentials (SSVEPs), which
make them excellent candidates for inspecting high fre-
quency oscillations [7] and LFHO [8].

More importantly, EEG and fMRI neuroimaging stud-
ies have been performed to inspect SSVEP in response
to high-level cognitive processes, such as facial expres-
sion (FE) recognition [9-19]. Interestingly, previous
fNIRS-based SSVEP studies mainly focused on the inves-
tigation of brain computer interfaces or brain activation
in the occipital cortex [20, 21]. In contrast, the applica-
tion of SSVEP in the fNIRS field [22—25] has never been
used to explore how FEs relate to brain functions in the
prefrontal cortex.

In this study, LFHO in the prefrontal cortex during
SSVEP-inducing stimulation were inspected using
fNIRS, in which the periodic flickering stimuli were FEs.
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In particular, FFT analysis and canonical hemodynamic
response function (HRF) deconvolution were carried out
to extract highly detailed spatial information on the power
and phase of the HbO signals. It is hypothesized that
LFHO can be induced by SSVEP-inducing flickering stim-
uli. It is also assumed that LFHO measures can be used to
differentiate different FEs. It is expected that the present
findings may contribute to a better characterization and
understanding of the underlying neural mechanisms asso-
ciated with LFHO.

Methods

Participants

Twenty-one college students (4 males and 17 females,
mean age + standard deviation: 22 + 2.5 years) were re-
cruited from the University of Macau campus. All par-
ticipants were right-handed with normal vision. In
addition, no history of neurologic or psychiatric disor-
ders was reported for any participant. The present ex-
perimental tests were approved by the Biomedical Ethics
Board of the University of Macau.

Stimuli and procedures
Two categories of facial stimuli (neutral and happy faces)
were selected from the NimStim Face Stimulus Set [26].
Based on the original faces, morphed faces were produced
by overlaying neutral faces with happy faces, leading to 21
FEs created with a 5% gradient change (Morpheus soft-
ware). For example, the 30% happy to neutral (H2N) FE
indicated that the stimulation material was generated with
a 70% happy face and 30% neutral one (Fig. 1).

fNIRS data were recorded while the participants were
performing the FE task. The fNIRS task in Fig. la con-
sisted of four blocks (conditions): neutral (condition 1),
happy (condition 2), neutral to happy (N2H; condition
3) in which a neutral face changed little by little to be-
come a happy face, and H2N (condition 4), in which a
happy face gradually became a neutral face. Each block
had 30 trials and each trial lasted 5.1s. The order of
block presentations was completely random, and the rest
period between each of the two blocks was 30s. There-
fore, the stimulus frequency of each block was set at 0.2
Hz. Each trial started with a red cross being displayed at
the center of the monitor for 1000 ms, followed by 21 FE
presentations for 2100 ms and a black screen for 2000
ms (Fig. 1b). In particular, the duration for each of the
21 FE presentation was 100 ms, which included a 30 ms
presentation of an FE and 70 ms presentation of a black
screen to generate the flashing effect. For each block, the
FE presentations for each of the 30 trials were identical.

fNIRS data acquisition and preprocessing
The fNIRS data were acquired at a sampling rate of 50
Hz using our CW6 system (Techen Inc., Milford, MA)
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Fig. 1 The procedure of the experiment. a The illustration of one fNIRS block including 30 trials; b The schema of one example trial

J

[27-30]. Four laser sources at wavelengths of 690 nm and
830 nm and four light detectors were placed on a standard
EEG cap to generate seven channels (Fig. 2), in which the
spatial distance between each laser source and each de-
tector was 3 cm. It should be noted that the fNIRS chan-
nels were located in the exact positions of the EEG
electrodes: C-5 (Ch 01), E-3 (Ch 02), D-6 (Ch 03), F-4 (Ch
04), E-5 (Ch 05), E-6 (Ch 06), and F-6 (Ch 07).

The raw fNIRS data were first transformed to light
density changes measured as optical density (OD) accord-
ing to the modified Beer-Lambert law and then motion-
corrected [31]. Further, a low bandpass filter at 0.25 Hz
and then a high bandpass filter at 0.02 Hz were used to
eliminate the effect of physiological noise. The high-pass
filter removes low-frequency measurement noise while

the low-pass filters remove physiological noise, such as
heartbeat (1 Hz) and respiratory signals (0.25-0.3 Hz). Sub-
sequently, the data were segmented into 5.1 s epochs for
each trial consisting of 1 s before and 4.1 s after trigger on-
set. Finally, HbO and HbR hemoglobin changes were gen-
erated using OD values, and only HbO signals were
analyzed in this study because they can serve as more sen-
sitive indicators of changes associated with regional cere-
bral blood flow. The grand-averaged HbO signals across
all conditions and participants are provided in Fig. 3 for
the seven channels.

Data analysis
In this study, the group-averaged HbO time series from
seven channels were converted to frequency-domain
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Fig. 2 Configuration of fNIRS probes. Red and blue dots denote the laser sources and detectors, respectively. The connection between each laser
source and detector is the channel
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Fig. 3 The time-domain of HbO signals during periodic SSVEP-inducing FE stimuli presentation. The time course of fNIRS data is grand-averaged
across all conditions and participants. The unit of the x-axis is seconds while the unit of the y-axis is micromoles
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signals via FFT. The FFT is usually applied to generate
SSVEPs in EEG analysis, and was also used here to cal-
culate the distributions of LFHO in the frequency do-
main. In addition, the signal noise ratio (SNR) of LFHO
was computed here, which was equal to the power of a
specific frequency divided by the averaged power of the
20 surrounding frequency bins taking the 10 nearest
ones on each side [16, 32]. Further, the grand-averaged
SNR time series of each channel was calculated for each
condition across all participants. Importantly, the z-
score of the grand-averaged SNR was generated for each
condition, which was denoted as the power of a fre-
quency that was first subtracted from the mean of 20
surrounding frequency bins and then divided by its
standard deviation [16, 32].

Results

LFHO across the prefrontal cortex

As depicted in Fig. 4, LFHO were successfully evoked
with periodic stimuli presentation at a frequency of 0.2
Hz for all channels. The LFHO exhibited a very similar
distribution to the SSVEP, in which grand-averaged SNR
peaks were detected at the fundamental frequency of the
stimuli (0.2 Hz) and its harmonics (0.4 Hz).

In addition, resting-state and task-elicited fNIRS re-
cordings without flickering stimuli with SSVEP were also
acquired in the frontal area using our CW6 system [24,
25]. The two sets of NIRS data were also preprocessed
and analyzed using the same procedure as LFHO during
SSVEP-inducing periodic FE stimuli presentation. As
displayed in Fig. 5, no monochronic peaks in SNR at a
frequency of 0.2Hz were identified for either fNIRS
dataset. It was discovered that without external periodic
stimuli, no LFHO at the dominant frequency can be elic-
ited in the prefrontal cortex.
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LFHO after deconvolution

In addition, to inspect whether LFHO were independent
of neurovascular coupling, HRF deconvolution was car-
ried out to generate the “neural level signals” (LFHO
after HRF deconvolution). The HRF was produced for
each channel by matching the HbO with the canonical
HRF and its time derivative. The blind HRF deconvolu-
tion is capable of eliminating the effect of hemodynamic
responses to a maximal extent, in which the HRF is
based on the convolution of the boxcar function and the
sum of two gamma functions as the canonical HRF [4,
33]. The deconvoluted HbO data before and after FFT
are plotted in Figs. 6 and 7, respectively. It was discov-
ered that LFHO were detected at 0.2 Hz. The HbO/SNR
signals from all channels before and after HRF deconvo-
lution were compared under various conditions. It was
discovered that the distributions of the SNR did not ex-
hibit significant differences after HRF deconvolution,
which demonstrates that LFHO are independent of neu-
rovascular coupling.

FE results

Meanwhile, paired ¢-tests were performed to examine
the difference in SNR amplitude of the dominant fre-
quency (0.2 Hz for the present study) between the neu-
tral and happy conditions, as well as the difference
between the N2H and H2N conditions. All statistical
analyses were conducted using SPSS 18.0 software. The
SNR maps across all channels under different conditions
are depicted in Fig. 8. Paired t-tests (¢15 = 2.20, p = 0.044,
CI=0.09-5.54) demonstrated that the happy condition
(13.73 £ 5.38) manifested greater brain activation than
the neural condition (10.87 +5.21). By contrast, no sig-
nificant difference between the N2H and H2N condi-
tions was found (¢;5 = 0.36, p = 0.73, CI = — 4.15-5.83).
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Fig. 4 The frequency domain grand-averaged LFHO signals across all conditions and participants during periodic FE stimuli with SSVEP. The unit
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Discussion

The main purpose of this study was to explore
whether fNIRS can detect low-frequency oscillations
elicited by periodic events in the prefrontal cortex.
Accordingly, exogenous flashing FEs at 0.2Hz were
utilized as periodic stimuli to induce SSVEP. The FFT
results of the HbO data show that there were pre-
dominant peaks of power at 0.2 Hz across all channels
in the prefrontal cortex, indicating that LFHO were
successfully evoked as a new indicator of cognitive
function or brain disorders. More importantly, the
power amplitudes at 0.2 Hz can exhibit differences in
brain activation between different cognitive states; the
happy condition elicited larger power amplitudes than
the neutral condition. Interestingly, previous EEG
studies also demonstrated that emotional stimuli elic-
ited larger SSVEPs than neutral stimuli [11-15, 19].

It is widely recognized that SSVEPs are elicited
mainly in electrodes over the occipital and parietal
cortex, which exhibit oscillatory components when
the participant is watching flickering at a constant
frequency. However, previous studies mainly focused
on the investigation of high-frequency neural oscilla-
tion activity with a frequency above 1Hz. In con-
trast, low-frequency oscillations (lower than 1Hz)
are seldom examined given that EEG is not an ideal
tool to inspect low-frequency oscillations. This study
demonstrated that fNIRS is an ideal tool to evaluate
LFHO in the prefrontal cortex that are related to
high-level cognition, such as processing emotional
FEs. Of note, due to the relatively low spatial reso-
lution of fNIRS, the accuracy could be improved by
the simultaneous utilization of Fourier and image
space analysis [34, 35].
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Fig. 6 The time-domain of HbO signals after deconvolution during periodic FE stimuli with SSVEP. The time course of fNIRS data is grand-
averaged across all conditions and participants. The unit of the x-axis is seconds while the unit of the y-axis is micromoles
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Conclusions

Although fNIRS can only indirectly record neural activ-
ity, it was discovered that LFHO detected by fNIRS
somehow reflect the underlying neural activity and are
independent of neurovascular coupling. Given that the
peak of LFHO at 0.2Hz was induced by periodic FEs
flickering at the same frequency, we infer that the high
power amplitude of the happy condition might result
from the underlying neutral activity rather than other
physiological noise.

N2H

H2N

Fig. 8 The brain activation maps of various conditions at a
frequency of 0.2 Hz. The values are z-scores
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