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Abstract

The elimination of intracranial hematomas has received widespread attention and the interactions between
hemolytic agents and hematomas have become a hot research topic. In this study, we used the Navier-Stokes
equation to describe the flow control equation for hemolytic agents in a tube and used Fick’s law and the Maxwell-
Stefan diffusion theory to describe the diffusion and mass transfer of hemolytic agents and hematomas. The
physical fields and initial boundary conditions were set according to the parametric properties of the fluid and
drainage tube. The COMSOL Multiphysics software was used to simulate the streamline distribution of hemolytic
agents in a bifurcated drainage tube. Additionally, the diffusion behaviors of the hemolytic agents into hematomas
were simulated and visual analysis of coupled multiphysics was performed to realize the digitization and
visualization of engineering fluid problems and contribute to the field of medical engineering.

Keywords: Flow diffusion, Navier-stokes equation, Tube flow, Fick’s law, Maxwell-Stefan diffusion equation,
Visualization

Introduction
The entry of hemolytic agents into hematomas
through drainage tubes is an essential component of
the treatment of cerebral hemorrhages, but current
medical software does not provide visual simulation
functions for this process. Visualization would be of
great significance for medical rehabilitation and drain-
age tube design. Therefore, it is necessary to simulate
and analyze the transportation of hemolytic agents
and the diffusion processes of hemolytic agents and
hematomas visually.
Since the eighteenth century, theoretical fluid me-

chanics has gradually developed as a science in
Europe. The theory of fluid mechanics has been sig-
nificantly enriched and developed based on various
experiments and the universal and accurate Navier-
Stokes equations for fluid motion have been estab-
lished [1, 2]. Computational fluid dynamics (CFD)
have ushered in a period of rapid development [3].

The flow theory for single-component fluids is near-
ing perfection, which has inspired scholars to study
the mass transfer of multiple components. The trans-
port processes of multicomponent fluids involve colli-
sions between the same and different molecules, and
transmission mechanisms are relatively complicated
[4], which means that this problem is not simply an
extension of the single-component gas transmission
process [5]. Therefore, the transport processes of
multicomponent fluids should be considered as com-
plex multi-field coupling problems [6]. For multicom-
ponent liquids, there is no systematic and complete
theory describing diffusion behavior. However, we can
describe this behavior based on Fick’s law [7] and the
diffusion model of the Maxwell-Stefan theory [8]. In
classical physics, the phenomenon of self-diffusion is
studied using an ideal gas as a model. The classic
Fick’s law of self-diffusion was derived from such a
model and this theoretical model has been analyzed
based on the random thermal motion of microscopic
particles [9]. However, it has been hypothesized that
the value of Fick’s law of diffusion is also applicable
to the transfer of dilute substances. In recent years,
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more accurate macroscopic models such as the
Maxwell-Stefan model have received increasing atten-
tion [10]. Based on the rapid development of com-
puter hardware technology, continuous improvement
of calculation methods, and development of numerical
analysis theories, a large number of domestic and for-
eign researchers have studied CFD and many numer-
ical calculation methods suitable for various flow
conditions have been developed [11]. These methods
have laid a theoretical foundation for the numerical
simulation of CFD.
Based on a background of CFD, this paper presents

a study on the flow and diffusion systems of binary
solutions under the effects of multiphysics fields. In
this context, the molecules of different components
tend to be evenly distributed in space, which reflects
the migration of substances through space. We con-
sider a basic method of mass transfer. According to
Fick’s law and the Maxwell-Stefan theory, a fluid dif-
fusion governing equation is derived and the CFD
module in the COMSOL Multiphysics software is
used to analyze the flow of hemolytic agents in a
drainage tube visually, as well as the diffusion
phenomenon that occurs when such agents enter
high-concentration blood through a drainage tube.
Model visualization analysis is the key to this re-
search. It allows us to present abstract and difficult-
to-observe diffusion phenomena in a visual form,
yielding theoretical conditions for studying the diffu-
sion behaviors of multicomponent liquids and even
more complex liquids. This lays the foundation for
the design of clinical drainage tubes and engineering
equipment in other fields, including medical rehabili-
tation. The application of visualization technology to
the medical and health industries will significantly im-
prove the level of social medical care.

Theory and methods
Navier-stokes equation
The Navier-Stokes equation, as the most famous
fluid-governing equation, is used to simulate various
fluids found in nature. It is the most accurate and
comprehensive mathematical model for describing
fluids [12].
The commonly used incompressible non-viscous

Navier-Stokes equation is defined as follows:

∂u
∂t

þ u � ∇uþ 1
ρ
∇p ¼ g

∇ � u ¼ 0

8<
: ð1Þ

Here, u is the fluid velocity, ρ is the density, p is the
pressure, and g is the gravitational acceleration.

The Navier-Stokes equation can reflect the basic
mechanical laws of viscous fluid (also called real fluid)
flow, so it has special significance for fluid mechanics
[13]. It describes the incompressible equation for viscous
fluids as follows:

∂u
∂t

þ u � ∇uþ 1
ρ
∇p ¼ g þ μ∇ � ∇u

∇ � u ¼ 0

8<
: ð2Þ

Here, μ is the coefficient of kinematic viscosity, which
is used to measure fluid viscosity or is expressed as υ. ∇
symbol is a gradient operator, ∇⋅ is a divergence oper-
ator, and ∇ ⋅ ∇ is a Laplacian operator. The first equa-
tion is the momentum equation and the second
equation is the mass equation, which defines the incom-
pressibility of fluid velocity.

Liquid flow in a tube
The flow of liquid in a tube is used as the basis for
many fluid flow problems. As early as 1883, the Brit-
ish physicist Osborne Reynolds conducted a tube
flow experiment using a circular tube and proposed
a dimensionless combination parameter called the
Reynolds number, which is represented by the
symbol Re [14].

Re ¼ ρud
μ

¼ ud
v

ð3Þ

Here, ρ is the fluid density, u is the fluid flow rate, d is
the tube diameter, μ is the dynamic viscosity, and v is
the kinematic viscosity.
For tube flow with a circular cross-section, the crit-

ical Reynolds number of 2320 is used to define two
flow regimes of laminar flow and turbulent flow.
When the Reynolds number is Re ≤ 2320, the fluid is
in laminar flow. When Re ≥ 4000, the fluid is in tur-
bulent flow. The range between these numbers is
called the critical zone.
The Mach number is a dimensionless quantity

named after the Austrian physicist Mach (1836–1916)
[15]. It is often simply referred to as the M number.
The Mach number is the most important parameter
for measuring the compressibility of fluid and it is de-
fined as the ratio of the flow velocity to the speed of
sound.

Ma ¼ u
c

ð4Þ

Depending on the value of Mach number relative to
a value of one, the fluid flow can be classified as a
subsonic flow, supersonic flow, or transonic flow as
follows:
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Ma
< 1 Subsonic flow
≈ 1 Supersonic flow
> 1 Transonic flow

8<
:

Law of diffusion
Fick’s law of diffusion
In 1855, Fick proposed a macroscopic law describing
fluid diffusion called Fick’s law [16]. There are two main
laws used to describe the steady-state diffusion and
unsteady-state diffusion of fluids. Fick’s first law for de-
scribing steady-state diffusion is defined as follows. In a
unit of time, the concentration gradient of fluid in a unit
of cross-sectional area is proportional to the flow of the
diffused material at that cross section, where the direc-
tion of the unit of cross-sectional area is perpendicular
to the direction of diffusion. The flow of diffusing sub-
stances is also called the diffusion flux. The greater the
concentration difference between units of the same fluid
or different fluids, the greater the diffusion flux. This
flux can be expressed by the following mathematical
expression:

Ni ¼ −Di∇ci ð5Þ

For a substance (i = 1, 2), Ni is the molar flux
(mol·m−2·s−1), Di is the diffusion coefficient (m2/s), and
ci is the concentration (mol/m). The continuity equation
is based on the conservation of mass.

∂ci
∂t

þ ∇ � Ni ¼ 0 ð6Þ

Based on Fick’s first law, Fick’s second law can be de-
rived to describe unsteady-state diffusion.

∂ci
∂t

¼ Di∇
2ci ð7Þ

The diffusion coefficient Di can be set as a constant
when describing the diffusion of chemical substances in
water or other typical liquid solvents, such as dilute
solutions.
According to the basic formula of Fick’s law, the one-

dimensional mutual diffusion formula for binary compo-
nents can be derived as follows:

∂M1

∂t
¼ −D12

∂ρ1
∂x

� A ð8Þ

In this formula, D12 is the inter-diffusion coefficient
when component 1 and component 2 exhibit one-
dimensional inter-diffusion, M1 is the mass number of
transport component 1 over a time period Δt, and A is
the fitting parameter.

Maxwell-Stefan diffusion equation
The general form of the Maxwell-Stefan equation based
on the theory of James Clerk Maxwell (1866) and Josef
Stefan (1871) is written as follows:

− ci∇Tμi ¼ RT
Xn
j¼1

ξ jN i − ξ iN j

Dij
ð9Þ

Here, ci is the concentration of component i, μi is the
chemical potential of i, ξi is the molar fraction of sub-
stance i, and Ni = ξiui ∈ Rd is the molar flux of substance
i. In the Maxwell-Stefan diffusion model, according to
the friction coefficient between two components, the
frictional force between component i and component j

is calculated as RT ξiðui − u jÞ
Dij

, where R is a constant, T rep-

resents the absolute temperature, and RT
Dij

can be regarded

as a resistance coefficient. Dij is the binary diffusion co-
efficient between the two substances. For physical rea-
sons, the binary diffusion coefficient satisfies the
symmetrical condition Dij ¼ Dji.
When an external field force exists, that external field

force must be added to the driving force. Therefore, the
driving force includes both external field forces and the
chemical potential gradient [17]. The general form of
the Maxwell-Stefan equation under an external field is
written as follows:

− ci∇Tμi þ ci f i
!¼ RT

Xn
j¼1

ξ jNi − ξ iN j

Dij
ð10Þ

The expression −ci∇Tμi in this equation represents
the force acting on component i of the mixture per

unit volume. ci f i
!

represents the external field force
acting on component i in the mixture per unit vol-
ume. The expressions to the left of the equal sign
represent the total diffusion driving force acting on
the component i.

Algorithm flow
In real-world engineering problems, fluid flow and diffu-
sion are very common phenomena. In this study, we
used the COMSOL Multiphysics software to analyze
these fluid phenomena visually and apply it to the
medical and clinical fields. Simulation in COSMOL Mul-
tiphysics requires the following processes: establishing
and selecting spatial dimensions, adding physical quan-
tities, defining geometric models and physical parame-
ters, dividing finite element meshes, solving, and
visualizing via post-processing [18]. The general algo-
rithm flow for COMSOL Multiphysics software simula-
tion is outlined below:

Zhu et al. Visual Computing for Industry, Biomedicine, and Art             (2021) 4:3 Page 3 of 13



Step 1: Select the required simulation model, list the
required control equations, and define known parame-
ters and necessary boundary conditions.
Step 2: Select the appropriate model dimensions to

interface with physics elements.
Step 3: Select the required research status.
Step 4: Set the size of the working space according to

the size of the simulation model and construct a geo-
metric model.
Step 5: Set the boundary conditions and various phys-

ical parameters.
Step 6: Grid division (select the appropriate grid size

for division).
Step 7: Derive and set appropriate solution conditions.
Step 8: Post-processing: Use the physical quantities

outputted by the simulation to calculate the required
physical quantities.

Determination of initial boundary conditions
Problem description
This section mainly focuses on using the COMSOL
Multiphysics software to simulate the flow of hemolytic
agents and the convective diffusion between hemolytic
agents and hematomas. The flow type is mainly the flow
of a hemolytic agent in a tube and the type of convection
diffusion is a mass transfer model that ignores heat
transfer and chemical reactions. We divide the
visualization process into two stages. The first stage fo-
cuses on the flow of a hemolytic agent through a drain-
age tube before it interacts with a hematoma. The
second stage is the convective diffusion mass transfer
that occurs when the two liquids come into contact.
Two types of color differences are selected. Water and
iodophor are used in physical experiments to embody
the simulation process. These experiments are illustrated
in the Fig. 1.
In this physical experiment, the iodophor was

drained into the water tank at a certain initial speed

through a drainage tube with a number of small
holes. Each of the small holes had the same size and
the phenomenon of diffusion into water occurred, as
shown in the Fig. 1. It is clear that the liquid flow
through the small drainage holes is not consistent
and is distributed in a tower shape. To make the
iodophor flow from each small hole uniformly, the
diameter, angle, length, and other parameters of the
drainage tube must be optimized.

Geometric model
According to the background of the target problem
and clinical needs, the type of tube in this study was
set to a bifurcated circular tube to accelerate convect-
ive diffusion and mass transfer. To lay the foundation
for further research and design a more efficient bifur-
cated drainage tube instrument, we initially designed
an original bifurcated tube [19]. The relevant parame-
ters were set such that the length of the main tube in
the middle was 200 mm, the radius was 2 mm, the
branch tubes were set at the center of the main tube,
and one branch tube was installed every 25 mm. The
branch angle of each branch tube is 45°, the length is
35.4 mm, the radius is 1 mm, the left end of the main
tube is the inlet, and the right end of the main tube
and the ends of the branch tubes are the outlets. The
design of the bifurcated drainage tube is presented in
the Fig. 2.

Fluid properties
The two fluids simulated in this study were hemolytic
agents and hematomas. The parameters of these fluids
were set as shown in the Table 1.
Urokinase lysis is an exogenous plasminogen that

can effectively decompose fibrin deposits and prevent
blood clotting [20]. The chemical reactions involved
in this process are relatively complicated. We ignored
these chemical reactions when designing our physics

Fig. 1 Physical experiments on binary liquid diffusion
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interface and only performed flow and diffusion
simulations.
Because there is no single method for the prepar-

ation of hemolytic agents, the required urokinase
content differs for different patients, locations, and
hematoma concentrations. Therefore, the densities
and dynamic viscosities of prepared solutions also
differ. The parameters of the hemolytic agent used
in our simulations are based on the optimal dosage
of 30 IU/mL of urokinase in sterile saline for the
hemolytic agent for a brain hematoma [21]. The
density of the urokinase solution is 30 kg/m3 accord-
ing to unit conversion. To reflect diffusion behaviors
accurately, we consider a hematoma as a fluid with a
higher concentration. According to the physiological
characteristics of blood, the dynamic viscosity of
normal blood is three to four times that of a
hemolytic agent prepared with saline. The viscosity
of a hematoma is even higher. Here, the dynamic
viscosity of a hematoma was set to 5 × 10−3 Pa·s.

Boundary conditions
In the study presented in ref. [22], the initial bound-
ary conditions for a water treatment plant system
were determined. The initial boundary conditions for
our study were derived in a similar manner and a
CFD module was selected for simulation. By combin-
ing the flows of the hemolytic agent in the bifurcated
tube and the diffusion reaction that occurs when the
agent enters the hematoma (i.e., when the two phys-
ical fields of tube flow and material transfer are
coupled) along the inner surface of the tube, the
equation of motion satisfying no-slip tube wall condi-
tions is u|r = 0, where the velocity is μ0 = 0.05 m/s.
The transfer mechanisms satisfied by the diffusion

model are Fick’s law and the Maxwell-Stefan model.
The additional mechanism is convection. The concen-
tration of the hemolytic agent was set to c0 = 1 mol/
m3 and the concentration of the hematoma was set
to c1 = 3 mol/m3. The diffusion coefficient between
the two fluids was set to D = 6.9 × 10−11 m2/s. Based
on the particularity of the physical form of
hematoma, it must be combined with a porous media
dilute substance transfer module for simulation ana-
lysis. The porosity was set to εp = 0.21.

Results and discussion
Macroscopic visual analysis
As a hemolytic agent flows through a tube, there is loss
along the way with a constant flow cross section. Add-
itionally, where the flow cross section changes, there is a
local loss of flow at bifurcations in the tube. Therefore,
the pressure and velocity fields at different positions
along the tube differ. Regarding tube properties, the ini-
tial boundary conditions are controlled by the following
equations:

A ¼ π
4
d2
i ð11Þ

Z ¼ πdi ð12Þ
dh ¼ di ð13Þ

Re ¼ ρudh

μ
ð14Þ

Here, di is the tube outer wall diameter and dh is the
tube hydraulic diameter. It is assumed that these two
values are equal, meaning the tube wall thickness is ig-
nored. A is the tube cross-sectional area and Z is the
tube wet circumference, meaning the circumference of

Fig. 2 Bifurcated drainage tube design drawing

Table 1 Hemolytic agent and hematoma parameter table

Fluid Density (kg/m3) Dynamic viscosity (Pa·s)

Hemolytic agent (urokinase) 30 1 × 10−3

Hematoma (high-concentration blood) 1340 5 × 10−3
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the fluid flowing through the tube. According to the
geometrical model parameters, the fluid property param-
eters and initial boundary value conditions given in first
part of the main tube are di = dh = 2mm. The dynamic
viscosity of the hemolytic agent is approximately μ =
1 × 10−3 Pa·s and the density is approximately ρ = 30 kg/
m3. This information is entered into the expressions
above to obtain a Reynolds number expression, denoted
as Re. From this expression, we can calculate the Darcy
friction factor, denoted as fD.

f D ¼ 8
8
Re

� �12

þ cA þ cBð Þ − 1:5

" # 1
12

ð15Þ

Here, cA and cB are the liquid concentrations at any
two points A and B, respectively, which are expressed as
follows:

cA ¼ − 2:57 ln
7
Re

� �0:9

þ 0:27
e
dh

� �" #( )16

cB ¼ 37530
Re

� �16

Here, e is the surface roughness (e = 0.0015 mm).
The fluid properties are defined by the following gov-

erning equations:

ρu∇ � uetð Þ ¼ − ∇tp � et − 1
2
f D

ρ
dh

uj juþ F � et ð16Þ

∇t � Aρuetð Þ ¼ 0 ð17Þ
After the flow trajectory of the fluid has been deter-

mined, the properties of the fluid are only related to

time, where F is the volume force and et is the tangential
vector of roughness over time.
The treatment of nondestructive tube joints is handled

based on the following formula:

pjunction ¼ pi þ
1
2
ρiu

2
i ð18Þ

Here, pi is the pressure of fluid i, ρi is the density of
fluid i, and ui is the velocity of fluid i flowing into a
joint.
Based on the calculations above, we can obtain the

three-dimensional pressure and velocity distribution re-
sults for a fluid flowing through a bifurcated tube with a
height expression.
Figures 3 and 4 indicate that for a particular initial vel-

ocity and flow driving force, the initial pressure value is
determined in the tube inlet stage and the fluid velocity
change and pressure change through the entire tube net-
work are virtually the same. Additionally, the hemolytic
agent has a specific flow rate. With the extension of the
tube and loss of energy consumption, the pressure grad-
ually decreases and eventually trends toward zero. When
the tube diameter is halved, accompanied by a local loss
of energy consumption, the flow rate decreases. Because
the fluid has an initial velocity, the flow velocity at the
end of the nozzle will not drop to zero, but the fluid will
slowly flow out of the drainage tube.

Visual analysis of microstreamlines
For a given velocity and pressure in a bifurcated tube,
the flow state is determined by the Reynolds number
and Mach number of the liquid flowing through the
tube. The parameters of the hemolytic agent and tube
were fed into Eqs. (3) and (4) to calculate that the

Fig. 3 Relationship between tube pressure and position in the tube system
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Reynolds numbers of the main tube and branch tubes
are Re1 ≈ 0.3 < 2320 and Re2 ≈ 0.15 < 2320, respectively,
while the Mach number of the fluid is Ma = 0.05 < 1. It
can be determined that the flow of the hemolytic agent
in both the main tube and branch tubes is laminar. The
fluid flows at subsonic speeds, so its compressibility can
be ignored. Therefore, the incompressible Navier-Stokes
equation can be used to describe the flow of the
hemolytic agent in the tube.
The COMSOL Multiphysics software was used to

generate a coarser mesh controlled by the physics
field acting on a bifurcated tube, as shown in the
Fig. 5.
The initial boundary conditions ensure that the mo-

tion equation satisfies the non-slip tube wall condi-
tion of u|r = 0 and that the wall resolution of the
bifurcated drainage tube can be obtained, as shown in
the Fig. 6.
Figure 6 reveals that the wall lift force everywhere in

the bifurcated tube is much lower than 100 viscous
units, meaning the flow can be considered to be well re-
solved on the wall.
The fluid properties governing the equation of laminar

flow are defined as follows:

ρ u � rð Þu ¼ r � - pIþ Kð þ F ð19Þ
ρ∇ � u ¼ 0 ð20Þ

Here, K is the viscous stress, which is expressed by the
following formula:

K ¼ μ½∇uþ ð∇uÞT �
∇ ⋅(−pI + K) is the diffusion term of the governing

equation and F is the volume force, which is the source
term for the governing equation. Equation (20) satisfies
the incompressible condition of fluid flow.
The inlet and outlet stages of the tube are set to be

fully developed flows, where the inlet stage is con-
strained by a velocity field with an average velocity of
uav = 0.05 m/s and the outlet is constrained by the aver-
age pressure. Therefore, the governing equation can be
written as follows:

u � t ¼ 0

ð − pI þ KÞn ¼ − pgradn
ð21Þ

By combining this equation with the streamline
visualization method [23], a three-dimensional stream-
line diagram of the liquid flow in the tube can be ob-
tained (Fig. 7).
To facilitate observation, we enlarged the streamline

diagram of the bifurcated drainage tube to obtain the
following partially enlarged views.
Figure 8 presents a colorized streamline diagram of

the local velocity amplitudes in the tube. The flow at the
inlet stage is laminar, so the flow lines are distributed in
parallel. In addition to the laminar flow at the root of
each bifurcated tube, there are also turbulent flows,

Fig. 5 Mesh division of the bifurcated tube

Fig. 4 Velocity distribution
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which are similar to the critical state of flow. As the fluid
flows, the farther it travels from the inlet, the lower the
fluid velocity.

Hemolytic agent and hematoma diffusion simulation
The shape model of a hematoma was extracted from a
computed tomography image of a patient with an intra-
cranial hematoma and imported into the COMSOL
Multiphysics software. The bifurcated drainage tube
model was then imported and grid refinement of the

drainage tube was performed as it acted on the
hematoma, as shown in the figure below.
The refined grid structure shown in Fig. 9 can be

controlled by users. The cell size is calibrated to
match the target fluid dynamics. Under conventional
predefined conditions, the cell grid parameter size is
divided and the maximum cell size is 2.01 mm, the
minimum cell size is 0.601 mm, the maximum cell
growth rate is 1.15, the curvature factor is 0.6, and
the narrow-area resolution is 0.7. The element size
scaling factor for refining angles is 0.35 and

Fig. 7 Velocity field streamline diagram

Fig. 6 Wall resolution
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smoothing is performed across all removed control
entities. The number of iterations is four and the
maximum element depth to be processed is four
units. Analysis was performed on this refined mesh
using calculations and a preliminary interaction dia-
gram of the hemolytic agent and hematoma was ob-
tained. The concentration difference between the

hemolytic agent and hematoma is defined by the con-
centration of the initial boundary conditions so that
the system produces a diffusion phenomenon driven
by concentration differences.
For the fluid flow in the free-flow region, the steady-

state Navier-Stokes equation can be applied, where the
law of mutual diffusion is derived from Fick’s law.

Fig. 8 Local streamline diagram of the bifurcated tube velocity field. a Entry stage; b Part of the first bifurcation; c Part of the second bifurcation;
d Part of the third bifurcation; e Part of the fourth bifurcation
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∂M1

∂t
¼ −D12

∂ρ1
∂x

� A ð22Þ

In this section, the Maxwell-Stefan diffusion model
is incorporated [24], convection and porous media
mass transfer mechanisms are added, and the mass
conservation equation is adopted to obtain a
convection-diffusion continuity equation under the
transfer of dilute species.

∂ εpci
� �
∂t

þ ∂ ρcp; j
� �
∂t

þ ∇ � Ni þ u � ∇ci ¼ Ri þ Si;

Ni ¼ −De;i∇ci:
ð23Þ

Here, εp is the porosity (εp = 0.21 was derived from the
calculation process), Ri is the total diffusion rate of sub-
stance i, and Si is the source term. The flux expression
has the form of Fick’s law.
The fluid diffusion coefficient is an isotropic coefficient.

De;i ¼ εp
τ F;i

DF ;i ð24Þ

Here, τF, i is the effective diffusion coefficient model of
the Millington-Quirk model.

τ F ;i ¼ ε
− 1

3
p

Figure 10 illustrates the concentration of the hemolytic
agent on the wall surface of the tube when it drains into
the hematoma over 9 s.
To obtain the diffusion concentration changes of the

hemolytic agent and hematoma, the simulation target is
placed in the interactive area between the hematoma
and bifurcated drainage tube, and post-processing is per-
formed on the COMSOL results to account for the con-
centration surface two-dimensional drawing group
animation.
Figure 11 demonstrates that the overall concentra-

tion changes on the surface of the hematoma spread
along the main tube of the bifurcated tube and
gradually spreads outward. For a point on the sur-
face of the hematoma, the smaller the radial dis-
tance to the main tube, the more thorough the
diffusion.
The analysis above focused on concentration

changes on the surface of the hematoma. To study
the diffusion and visualization of the hemolytic
agent and hematoma, it is necessary to perform
two-dimensional cross-sectional analysis inside the
hematoma with multiple branch tubes. The drainage
tube and hematoma wall outside the hematoma
were set to have no flux. We generated a two-
dimensional cross section of the overall figure from
the symmetry plane of the bifurcated drainage tube.

Fig. 9 Meshing of the drainage tube and hematoma

Fig. 10 Concentrations on the wall of the bifurcated tube when the hemolytic agent flows
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Because there is a concentration gradient between
the hemolytic agent and hematoma, after the
hemolytic agent enters the hematoma through the
bifurcated drainage tube, four times instances were
selected randomly. The inter-diffusion dilution reac-
tions observed at each node are illustrated in the
figure below.
Figure 12 indicates that the initial hematoma con-

centration is c1 = 3 mol/m3 and the hemolytic agent
concentration is c0 = 1 mol/m3. The colors in the leg-
ends in this figure represent changes in the liquid
concentration, which are driven by the diffusion
process of the hemolytic agent into the hematoma.
The lines with white arrows in the figure represent
the flux. Changes in direction represent the diffusion
process from the hematoma into the hemolytic agent,
which is driven by the process of mutual diffusion of
binary fluids.
In the case of t = 16.6 s, the mutual diffusion reac-

tion is in the initial stages. When the hemolytic agent
is drained into the hematoma, the ends of the bifur-
cated tube begin to change in concentration and flux.
In the case of t = 66.6 s, with the continuous injection
of the hemolytic agent, the agent and hematoma ex-
perience the inter-diffusion phenomenon. The
hemolytic agent dilutes the concentration of the
hematoma and the direction of the hematoma con-
centration flux points toward the orifices of the drain-
age tube. When t = 116.6 s, one can see that the
central part of gradually completes the mutual diffu-
sion reaction with the hemolytic agent. Overall, the
hemolytic agent, the part of the hematoma far away
from the drainage tube outlets, and the position of
the dead corners with complex geometric shapes

change more slowly. At t = 183.3 s, one can see that
the third branch tube, fourth branch tube, and main
tube outlet interact more clearly. The hemolytic agent
flowing from these three nozzles plays a major role in
diffusion. In contrast, the hemolytic agent flowing
from the first two branch tubes has a slower diffusion
effect in the hematoma.
To make the hemolytic agent spread evenly through

the hematoma, it is necessary to improve the design of
the bifurcated drainage tube based on this phenomenon.
This is one future model application and prospect of this
research.

Conclusions
Based on the surgical removal of intracranial hematomas
in clinical medicine, we used the theory of fluid mechan-
ics to study the flow and diffusion of hemolytic agents
and hematomas. By using the CFD module of the COM-
SOL Multiphysics software combined with multiple
physics interfaces to perform numerical simulations at
different stages of hematoma and hemolytic agent inter-
action, the design of a bifurcated drainage tube was
analyzed and the flow state of the hemolytic agent in the
drainage tube and the diffusion of the hemolytic agent
into the hematoma were visualized. Both two-
dimensional and three-dimensional visual analysis and
results were presented.
First, we determined that the flow of the hemolytic

agent in the bifurcated drainage tube is dependent on
the initial pressure and velocity conditions. Under the
initial conditions considered in this article, the agent
exhibits a laminar flow state in the main tube and a
critical flow state at the bifurcation interfaces. When
the required experimental conditions change, the

Fig. 11 Changes in hematoma surface concentrations
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software interface can be adjusted. However, for a spe-
cific geometric model, changing the experimental pa-
rameters and initial boundary conditions may affect the
experimental results. Second, after the hemolytic agent
entered the hematoma, the two solutions inter-diffused.
This study was conducted while ignoring the chemical
reactions of the two agents. However, there are chem-
ical changes in the real world. When considering chem-
ical reactions, visualization software interface settings
and simulation results will be more complicated, so
more in-depth research is required. Third, when the
hemolytic agent entered the hematoma through the
drainage tube, the diffusion effect mainly occurred in
the exit areas around the last three tubes. According to
the visual analysis of this result, we must further im-
prove the design of bifurcated drainage tubes for med-
ical equipment so that they provide the functions of
flexible length, multi-angle rotation, import and export,
etc. This will be considered in follow-up research as a
theoretical basis for the optimal design of medical
equipment.

Abbreviation
CFD: Computational fluid dynamics
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