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Abstract

The visualization of dynamic graphs is a challenging task owing to the various properties of the underlying relational
data and the additional time-varying property. For sparse and small graphs, the most efficient approach to such
visualization is node-link diagrams, whereas for dense graphs with attached data, adjacency matrices might be the
better choice. Because graphs can contain both properties, being globally sparse and locally dense, a combination of
several visual metaphors as well as static and dynamic visualizations is beneficial. In this paper, a visually and
algorithmically scalable approach that provides views and perspectives on graphs as interactively linked node-link and
adjacency matrix visualizations is described. As the novelty of this technique, insights such as clusters or anomalies
from one or several combined views can be used to influence the layout or reordering of the other views. Moreover,
the importance of nodes and node groups can be detected, computed, and visualized by considering several layout
and reordering properties in combination as well as different edge properties for the same set of nodes. As an
additional feature set, an automatic identification of groups, clusters, and outliers is provided over time, and based on
the visual outcome of the node-link and matrix visualizations, the repertoire of the supported layout and matrix
reordering techniques is extended, and more interaction techniques are provided when considering the dynamics of
the graph data. Finally, a small user experiment was conducted to investigate the usability of the proposed approach.
The usefulness of the proposed tool is illustrated by applying it to a graph dataset, such as e co-authorships, co-
citations, and a Comprehensible Perl Archive Network distribution.
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Introduction
Graph data, particularly dynamic graph data, occur in
various fields of application such as call dependencies in
software engineering [1], friendship relations in social net-
works [2–4], areas of interest connections in eye tracking
data [5], or traffic situations in road networks [6].
Exploring such data requires advanced visual meta-

phors, in the best case, interactively linking several of
such metaphors to benefit from the positive effects of all
of them [7]. For example, node-link diagrams [8] are
useful for small and sparse graphs (see Fig. 1 for

examples of already large and sometimes dense graph
structures), whereas adjacency matrices [9] are best for
large and dense networks [10, 11]. However, using only
one concept may lead to a performance degradation in
certain tasks [12].
To provide even more ways to find insight than just one

fixed visualization technique, several node-link layouts are
provided [13], along with several matrix reordering tech-
niques [14]. The node-link diagrams follow esthetic graph
drawing criteria [15] whereas the adjacency matrices sup-
port the finding of different grouping and clustering pat-
terns depending on the user tasks and which reordering
strategy is requested. Although all views and parameter
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adaptations can be selected upon user demand, the tool
can also automatically suggest them based on graph data
properties. The proposed novel linked visualization strat-
egy provides ways to adapt a view based on insight from
other views; for example, clusters found in an adjacency
matrix can be used to guide the layout of the node-link
diagram and vice versa.
The proposed novel technique allows an interactive se-

lection of clusters in several views and allows the algo-
rithm to compute the intersection of the node sets, a
concept that is also extended to the dynamics of a graph
structure. The output is a filtered version of a graph
containing all nodes that occur for all the requested
properties. This provides a clue regarding the import-
ance of a node or node group based on algorithmic con-
cepts such as layouts and reorderings, along with an
additional enhancement through visual depictions of the
output of such algorithms in combination, even for
time-varying behaviors of selected node groups for cer-
tain visual features such as clusters and anomalies.
The novelty of this study in comparison to MatrixEx-

plorer [2] can be described as follows:

Visualization-based cluster and outlier detection
Clusters and groups of vertices can be automatically de-
tected based on the visual properties given by the layout
of a node-link diagram or the positions of the nodes in
an adjacency matrix.

Combined cluster information
Clusters or outliers can be identified in several views to
link the identification processes for nodes that occur in
clusters based on several layouts or matrix rearrange-
ments. Two modes are supported: an intersection of
common nodes and a union of all occurring nodes.

Web-based
Providing web-based visualization makes it easier to
start, without the need to install software or libraries.
Moreover, along with the visual results, the data can be
shared with other researchers through a dissemination
process or even as a collaborative interaction.

Scalability for vertices and edges
The application of a pixel-based representation supports
the identification of node clusters and groups in ex-
tremely large graphs, although with matrix reordering, it
can take quite some time until a suitable clustering re-
sult is generated.
This article is an invited extension of a formerly pub-

lished conference paper [16] with special focus placed
on the following aspects:
An extended repertoire of node-link layouts and

matrix reordering techniques is provided (“Layouts and
reorderings” section).
The automatic identification of groups, clusters, and out-

liers is supported, considering the dynamics of the graph
data, based on the visual outcome as node-link diagrams
and matrices (“Combining graph properties” section).
To visualize the dynamic graphs, views in the form of

side-by-side node-link diagrams and adjacency matrices
are provided as a type of time-to-space mapping [17]
(“Dynamic graph visualizations” section).
Several more interaction techniques are implemented,

as described in a list-based format (“Guidance-focused
interaction techniques” section).
Finally, a small user evaluation is conducted to investi-

gate the usability of the proposed interactive visualization
tool (“User study” section).

Related work
Graphs were initially introduced [18] to find a solution
to the graph-theoretic problem, known as the “Seven

Fig. 1 Node-link diagrams of real-world datasets: co-authorships, co-citations, and a Comprehensible Perl Archive Network (CPAN) distribution (cpa
2019) [16]
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Bridges of Königsberg”. To visually illustrate the prob-
lem, Euler used the visual metaphor of node-link dia-
grams [8]. Several years ago, they were powerful because
the graph data were small and sparse, with only a few
vertices and edges.
Currently, graphs are typically huge, and preprocessing

and managing graph data is already a significant chal-
lenge [19]. However, visualizing relational data [20] as a
node-link diagram is a naive approach leaving to visual
clustering [12]. Even advanced layout algorithms [21]
can only partially solve this problem because the im-
mense size and density of the relational data do not
allow the following individual outliers or anomalies. In
most cases, these are occluded by dense graph regions,
such as clusters of nodes.
Adjacency matrices are powerful visual concepts [9].

They allow thousands of vertices, and all weighted and
directed edges in-between, to be represented. However,
adjacency matrices show problems when following
paths, which is also problematic for node-link diagrams
if the graphs exceed a certain size [10, 22]. Moreover, an
unordered adjacency matrix will not show any structure;
hence, matrix reordering strategies, also guided by a hu-
man user [23] must be supported [14] Hybrid represen-
tations use the benefits of both concepts [3, 4]; however,
a direct integration of both concepts does not support
several independent layouts or a reordering, or at least
makes them more difficult. By contrast, such a combin-
ation might hide insights that can be seen through
node-link diagrams or adjacency matrices when repre-
sented separately. Consequently, Henry and Fekete’s [2]
original approach is followed. Although their approach
is already equipped with various features, the concept of
exploiting visual properties from formerly laid out and
reordered node-link diagrams and adjacency matrices is
further added for node selection and filtering. If the
graph data are not static, but dynamically change over
time, visualization challenges occur [17]. However, apart
from visualizing the dynamic graphs in several visual
metaphors [7], it is challenging to compare the dynamics
of the graphs from several perspectives [24]. Although
this comparison can be conducted visually, it might also
be supported by interaction techniques, allowing further
analyses of the dynamic aspect in the graph data [25].
One possibility for visualizing time-varying graphs is by
focusing on subgraphs to reduce the complexity of an
analysis by using a supervised layout-based classification
model [26]. Although this seems to be a powerful con-
cept, an attempt was made to combine algorithmic, vis-
ual, and interactive approaches to build synergy effects
for dynamic graph data exploration tasks. In addition, a
pure algorithmic analysis, data transformation, and data
storage and management play crucial roles in supporting
the insights regarding this type of data [27]. However,

regardless of how efficient an algorithmic solution is for
a large dynamic graph, visual outputs based on a com-
bination of visual metaphors are typically needed to
guide the data exploration and analysis process [17]
based on user decisions, as in a visual analytics system.
This requires views and algorithmic processes on indi-
vidual graphs, which create a dynamic graph if sequen-
tially placed side-by-side.
However, including static and dynamic visual proper-

ties from corresponding graph visualizations and
algorithmic processes have not been included in the
modification or filtering process, targeting a better
insight detection based on several visual features instead
of only one. In this paper, focus is on displaying a graph
in several views supporting the human observer by inter-
actively changing the views, layouts, and reorderings on
demand, inspired by a multiple visual metaphor ap-
proach [7, 28]. For this reason, insights from the views
and parameter configurations are considered, along with
the linking and highlighting of such insights.

Data and visualizations
In this section, a data model for graphs is described,
along with how a layout and reordering can be gener-
ated, which processes and algorithms are involved, and
how visual graph properties can be combined and linked
to influence other views and graph visualizations, par-
ticularly dynamic graph visualizations. Moreover, typical
interaction techniques that are useful for guiding and
navigating users in the created visualization tool are
considered.

Graph data
A graph G = (V, E) typically consists of a finite number
of vertices V≔ {v1,…, vn} and a finite number of edges E
≔ {e1,…, em} ⊆V ×V. The edges might be weighted,
meaning a weight function is attached, mapping each
edge to a real-valued number, f : E—→R. In the special
case of a dynamic graph, a model that describes the dy-
namics as a graph sequence consisting of individual
static graphs can be used, as described above. These can
be mathematically expressed as follows:

Γ≔ G1;…;Gkf g;

where k ∈N models the number of graphs in this se-
quence. As an example, if a time component instead of a
natural sequential order is involved, the indices can carry
any number that models a time stamp.

Layouts and reorderings
The layout of a graph G is the positioning of the given
vertices V to n (normally) distinct locations in the dis-
play space, whereas the edges in between are drawn as
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either straight, curved, orthogonal [29], or partial links
[30, 31], depending on several esthetic graph drawing
criteria to be followed [32].
A reordering is applied to an adjacency matrix [14]

following a certain property that produces a rearrange-
ment of the vertices in such a way that a certain (typic-
ally user-defined) property holds, for example, a cluster
structure at the diagonal.
For the layouts of node-link diagrams, the proposed rep-

ertoire is extended to support radial/circular, arc, force-
directed, and hierarchical layouts. For the matrix reorder-
ing techniques, the guidelines given by ref. [14] are
followed along with support reordering techniques from
all described classes in their study. Moreover, a random-
based approach is supported along with a reordering ap-
proach that considers the weight-based sum of the rows
and columns. In the corresponding visualization tool, the
user is able to select the node-link layout as well as the
matrix reordering approach from the list of given options.

Combining graph properties
As the novelty of this technique, insights such as clusters
or anomalies from one view can be used to influence the
layout or reordering of another view. The importance of
nodes and node groups can be detected, computed, and
visualized by considering several layouts and reordering
properties in combination. Moreover, in the novel con-
cept, users can take into account layouts and the reor-
dering of several graph visualizations in a graph
sequence, that is, the temporal information can also be
considered to guide a dynamic graph exploration for
relevant nodes or node groups. As the first step toward
this direction, several node-link layouts and adjacency
matrix reorderings of the same graph dataset are com-
puted, and the visual properties of the produced
diagrams are then considered to build an intersection or
union set of the nodes under investigation. This
principle helps identify certain node groups that belong
together under different circumstances, meaning that
their relations with each other are stronger than if only
one representation is taken into account, which also
holds for several graphs in a sequence, for example,
making the appearance of node groups in an evolving
cluster more relevant for an investigation.
The identification of clusters occurs in two stages:

first, several algorithms are applied to a graph dataset,
and second, the visual outputs of these algorithms are
combined to detect strongly clustered nodes or nodes
that do not fall in any of the clusters, which might be
considered ‘real’ outliers. Such a feature is useful as a fil-
tering function and has several benefits compared to the
standard “one visualization” filtering.
Moreover, automatic node group detection can be ap-

plied based on the node group densities. This can be

achieved for both a node-links layout and the adjacency
matrices. Although this is a useful approach, it is best if
human users equipped with the perceptual ability to rap-
idly detect visual patterns are involved in the node de-
tection process [33].
Automatic computations of such relevant graph node

properties, such as clusters, can be extended to dynamic
graphs. For this reason, a static graph can be taken into
account by defining a type of ground truth graph from
which node groups are selected. This selection was then
applied to all graphs from a sequence to depict their
evolution over time. Furthermore, an algorithm can be
allowed to identify stable parts in a dynamic graph, that
is, identifying which clusters build the backbone of the
evolution, indicating that they stay rather constant over
time. These might provide a hint for strong node rela-
tions that persist over a longer time span than if the
cluster oscillates around continuously. The goal of such
an automatic computation based on several layouts and
a matrix reordering is to provide an observer with add-
itional views on stability patterns over time.

Node-link diagrams and adjacency matrices
Although the proposed original tool provided three lay-
outs for a node-link diagram, i.e., force-directed [34], ra-
dial [35], and arc [6] layouts, the tool has been extended
to support even more layouts such as a hierarchical lay-
out. A force-directed layout presents the larger clusters
close to the center and the smaller clusters and single
isolated nodes close to the border of the diagram (Fig. 2).
This helps to identify outliers better than if they are lo-
cated inside a hairball-like node-link diagram.
A radial layout displays the nodes aligned as a circle in

which each node has an equal distance to the center,
and edges are represented as straight lines connecting
the nodes (Fig. 3). The radial layout is useful for deter-
mining the density of a graph in local regions and the
connections between nodes.
The arc layout aligns the nodes on a straight line, with

edges represented as arcs connecting the nodes (Fig. 4).
The arc layout has the advantage of being able to high-
light the components if the node order is optimized.
The hierarchical layout supports a flow in a graph, that

is, the graph nodes are organized in horizontal layers
with links connecting them (Fig. 5).
Currently, the adjacency matrix is displayed as a pixel

map, where the links are shown as filled grid cells where
the corresponding connected nodes meet. The color of
each cell depends on the weight of the edge, i.e., edges
with a higher weight are lighter than edges with a lower
weight (with the default color scheme). In the original
tool, five reordering strategies are implemented, and the
list is extended using all reordering strategies described
in the study by ref. [14], as well as a random reordering
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and an option to return to the original ordering (see
Fig. 6 for a reordering example in a simple adjacency
matrix visualization), which is called a reverse Cuthill–
McKee order. More orderings are possible, which are
not mentioned above, such as a unique value order, a
mean value order, and a random permutation order, in-
spired by the study conducted by ref. [14].

Dynamic graph visualizations
To support views and perspectives on dynamic graphs,
side-by-side views called time-to-space mappings are
provided [17]. In the present study, two major visual
metaphors are followed for the individual static graphs
in a sequence, i.e., node-link diagrams and adjacency
matrices. The user can see both of them placed next to
each other and can adapt a visual metaphor and the lay-
out or reordering on demand, either for the entire se-
quence or each static graph in the sequence individually
[7]. Figure 7 gives an impression of a sequence of static
graphs in a force-directed layout from which individual
node groups can be selected or automatically computed
based on certain visual properties, for example, all lying
on the same horizontal layer. The user is able to decide

if those node groups are to be further inspected based
on their union (all of them together) or their intersec-
tion (only the overlap), which is a stronger selection cri-
terion than the union operation.

Guidance-focused interaction techniques
The proposed tool includes the following interactions
(see Fig. 8 for some examples) based on the visualization
interactions presented in ref. [36].

Select
When the user clicks a node in the node-link diagram,
the node is selected and changes its color to red. Users
can select nodes and edges in the adjacency matrix by
clicking on the cells inside (see Fig. 9 for an illustrative
example from an actual small dataset).

Explore
Users are offered panning and the ability to zoom in and
out of the matrix. Panning works by clicking on the
matrix and dragging it with the mouse. Zooming in and
out can be achieved using the mouse wheel. The scalable
vector graphics (SVG) view of the node-link diagram

Fig. 3 Radial layout of node-link diagram of randomly generated dataset. Left: Initial radial layout; Right: Filtered radial layout [16]

Fig. 2 Left: Force-directed node-link diagram of a co-authorship dataset with 1053 nodes and 3504 edges; Right: Force-directed node-link
diagram of the CPAN distribution dataset with 2724 nodes and 7669 edges [16]
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also allows users to zoom in and out with the mouse
wheel. Another form of possible zooming is to change
the distance of the nodes using a slider, which also
changes the size of the graph.

Reconfigure
Each layout features a slider that rearranges the data
based on the distance between nodes. For example, if a
dataset was originally presented in a shrunken configur-
ation, users can increase the distance between the nodes
to better analyze the data. To implement this, the value
set by the slider is being used to change the distance be-
tween nodes, the force gravity, or the circle radius in the
functions that draw the node-link diagram. The original

layout generation also belongs to this interaction cat-
egory (Fig. 10).

Encode
The color nodes in the node-link diagram belonging to
the same component with the same color. In this way,
the user can easily differentiate between components.
Users are also offered a button to change the hue, satur-
ation, and brightness of the nodes in the SVG view. This
can be achieved using the information regarding the
components in the json file of the dataset and avaScript-
based visualization library (D3) commands to set the
color of the nodes.

Elaborate
When the users select a node in the node-link diagram,
they can see the node’s ID, name, and component. If the
users select an edge in the matrix, they can see informa-
tion about its source, target, and weight. This is possible
because the information can be extracted from the json
file of the data for each node or edge using D3.

Filter
When the users select a component by clicking on a
node belonging to it in the canvas view, an SVG view
displays only this component next to the canvas view. In
the SVG view, the user can see the incoming/outgoing
edges displayed with arrowheads. A D3 example was
used as an inspiration for the proposed SVG view. In
addition, when users select nodes in the radial or arc lay-
outs of the node-link diagram, the selected component
is highlighted.

Connect
When users select an edge in the matrix, the corre-
sponding nodes linked by this edge are colored red in
the node-link diagram. If highlighting is enabled when
users sect a node in the node-link diagram, the matrix

Fig. 4 Arc layout of the node-link diagram of the randomly generated dataset. Top: The initial arc diagram; Bottom: Filtered arc diagram [16]

Fig. 5 A hierarchical layout of a node-link diagram shows the graph
nodes on horizontal layers
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will highlight all edges connected to this node. This is
achieved using global variables that store information
about the nodes and edges, and a select function that de-
tects if a node or edge is selected. The information of
these variables is then updated based on the selected
object.

Guiding graph exploration
The proposed tool offers many possibilities for inspect-
ing a graph dataset and applying algorithmic processes.
On a general level, the exploration between static and
dynamic graphs can be distinguished.

Exploring static graphs
The usefulness of the proposed visualization tool is il-
lustrated by applying it to an author similarity dataset
and show an adjacency matrix, with two datasets for
the force-directed layout of the node-link diagram
containing CPAN distributions and co-authorship
data. A small generated dataset will also be used to
showcase the radial and arc layout as a node-link dia-
gram. Although different datasets will be used be-
cause adjacency matrices with a high number of

edges are more interesting to study, the node-link
diagram struggles with rendering graphs with a high
number of edges, and the radial and arc layouts are
more useful for smaller datasets.
The co-authorship data included 1053 nodes and

3504 edges. Once the users have uploaded the data-
set, they can view it as a node-link diagram. The
force-directed layout of the node-link diagram dis-
playing the co-authorship dataset is shown on the left
in Fig. 2. Users can see that larger connected compo-
nents are displayed at the center of the visualization,
whereas smaller components are displayed relatively
closer to the border of the visualization, and single
isolated nodes are even closer to the border. In
addition, nodes with a larger number of incoming
edges appear larger than the others. By using this in-
formation, it can be concluded that the single nodes
can be considered as outliers and ignored; hence, they
do not flow into the selection of the most important
and strongly connected nodes. Finally, it can be ob-
served that every connected component of the graph
has its own color, making it easy for the users to dif-
ferentiate between the different components of the
graph. Selecting individual components from the

Fig. 6 Illustration of a reordering: a Original adjacency matrix; b Reordered matrix based on a Cuthill–McKee order

Fig. 7 An illustrating example for a dynamic graph consisting of 5 time steps (T1) to (T5) shown in a node-link diagram in a force-directed layout.
Simply inspecting the dynamic graph does not really help identify dynamic visual patterns, and hence algorithmic and visual concepts must be
integrated to achieve the full potential of the approach
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node-link layouts can lead to useful insight that can-
not be found by the standard solutions (Fig. 11).
The CPAN distribution dataset contained 2724 nodes

and 7669 edges. The force-directed layout of the node-
link diagram for this dataset is shown on the right side
of Fig. 2. When the graph is rendered, users can note
how most of the nodes in the graph are connected to a
large component. Within it, there are a few nodes that
appear larger, having a higher number of incoming
edges. In addition, these nodes appear to be surrounded
by groups of smaller nodes with fewer edges. These
nodes represent packages upon which other packages

depend. They are also more frequently used compared
to the others. Nodes that are not part of the large con-
nected component can be interpreted as outliers and are
therefore ignored.
The randomly generated dataset contains 120 nodes,

the maximum weight of an edge is 30, and the chance of
an edge is 0.007 (0.7%). The radial layout for this dataset
is shown in Fig. 3, and the arc layout is shown in Fig. 4.
In Fig. 3, the initial radial layout on the left shows the
entire dataset. In the filtered radial layout on the right,
users can see that most of the edges belong to the com-
ponent of blue nodes if they select a node from the

Fig. 9 A node, a node group, an edge, or an edge group can be selected in a a matrix or b node-link diagram

Fig. 8 An illustration of several interaction principles included in the tool: A layout or matrix reordering of a graph can be generated and the
corresponding visualization can then be shown. Selecting a node and computing the cluster it belongs to is a powerful concept; however, the
user can also manually select nodes and node groups for further explorations
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component of blue nodes. The arc layout can help the
user find co-occurrences in the data. In Fig. 4 (left), the
initial layout reveals the connected components in the
graph. The filtered layout on the right reveals the con-
nections of a selected node within its component.
The author-similarity data included 1053 nodes and

907164 edges. The initial adjacency matrix displaying
this dataset is shown in Fig. 12 (a). In the initial order,
no clear patterns were observed. However, when the re-
verse Cuthill–McKee ordering is executed on the data,
users can see symmetric diagonal block patterns. The
reordered matrix is shown in Fig. 12 (b).
This means that there are strongly connected compo-

nents, and the nodes within them share similar charac-
teristics. Users can also see that the components
increase in size from the top-left to the bottom-right
corner of the matrix, where the connected components
are the largest. In addition, in each component, the
edges are ordered by their weight from the bottom-right

corner of the component to the top-left corner, where
the weight of the edges is the largest. In Fig. 13, the adja-
cency matrix displays the same dataset using the mean
value ordering (1), weight sum ordering (2), unique
value ordering (3), and shortest path ordering (4).
Users can see the reordered matrices in (1), (2), and

(3) ordering the edges by weight from the top-left to the
bottom-right corner of the matrix, where the weight of
the edges is the largest. The reordered matrices (3) and
(4) form block patterns, which also confirm that there
are strongly connected components in the data.
The node-link layouts as well as the matrix reordering

can be applied to all graphs in a graph sequence or even
individual graphs. Selecting node groups individually fol-
lowing certain visual properties can help visually identify
the selected node groups in other diagrams, or applying
algorithmic approaches can automatically detect com-
monalities of selected node groups, for example, their
overlap. Based on these visual and algorithm

Fig. 10 a A node-link diagram can be enhanced by applying b a force-directed algorithm to generate a better group- preserving layout

Fig. 11 Selecting a cluster of nodes to take a closer look at the details, e.g., a node that is important in this cluster
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identification processes, hints about strongly connected
nodes can be obtained whose connection is based on
several visual outcomes, not an individual one, as in
standard graph visualization techniques. In particular,
for dynamic graphs, such a multiple perspective

identification feature might be useful for understanding
stable and unstable node groups in graph evolution. The
usefulness of the technique can be shown best if several
graphs are under exploration, for example, a sequence of
static graphs, that is, a dynamic graph. An example

Fig. 12 a: The adjacency matrix of the initial author-similarity dataset with 1053 nodes and 907164 edges; b: The reordered dataset using the
reverse Cuthill-McKee algorithm [16]

Fig. 13 Matrices of the author-similarity dataset reordered using the (1) mean value ordering, (2) weight sum ordering, (3) unique value ordering,
and (4) shortest path ordering [16]
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scenario for such a case is described in the following
section.

Exploring dynamic graphs
The co-authorship graph persists over a longer time
span, one for each year, which makes the static graph
change dynamically. Exploring groups or clusters of co-
authors over the years and how the core of the cluster
has evolved over time is a tedious task, particularly if the
graph data have evolved over several decades. Although
inspecting a side-by-side visualization of the graph se-
quence can give a first impression of the data, under-
standing the evolution of clusters remains a challenging
task if the core of the cluster changes dynamically.
Hence, it might be a wise decision to only visually ob-

serve one static graph from the graph sequence (maybe
the latest one), select an interesting node, compute a
corresponding cluster in the static graph (Fig. 14), and
apply an intersection algorithm that computes the stable
parts of this cluster over time (to see which co-authors
conducted research together over longer time spans).
However, simply selecting groups of nodes visually

might not be as exact as the use of algorithmic cluster
detection algorithms, particularly for all time steps in
the graph sequence. Moreover, a visual inspection of a
multitude of graphs is a tedious and time-consuming
task, whereas a pure algorithmic selection does not have
such an effect, as shown by visual patterns or outliers
that can only be detected by human users owing to hu-
man perceptual capabilities. Consequently, a mixture
based on user decisions, selections, and algorithmic solu-
tions can be the key to success under this situation.
As an add-on of the present study, a group of nodes

can be visually selected and their evolution over time

can be shown, not only in a single dynamic graph
visualization, but also in several visualizations, based on
different node-link layouts or an adjacency matrix reor-
dering of the individual static graphs (see Fig. 15 for a
sequence of force-directed node-link diagrams for a pre-
selected cluster from a larger co-authorship graph and
adjacency matrices for each time step, and for illustrative
purposes, in different matrix reorderings for the entire
graph). With this concept, it helps to start with a user-
selected number of nodes, while comparing them in dif-
ferent views to identify the most connected nodes. A
pure algorithmic solution might not lead to the best op-
tion because several relevant nodes might be missed by
the algorithm because of the missing semantic informa-
tion as well as an understanding of the algorithm for the
visual patterns in a node-link diagram or adjacency
matrix. Human users are faster and more accurate when
identifying visual patterns, particularly if many layouts
and a matrix-reordering are used; however, a clever
combination with an algorithmic approach can generate
an even more suitable solution.

User study
A small user experiment was conducted by recruiting 15
students from a visualization course. The students had
prior knowledge of graph visualization from lectures and
assignments during the course. The ages of the students
ranged from 21 to 29 years, with an average age of 23.4
years. The student population consisted of 10 men and 5
women. Seven of them wore glasses or contact lenses.

Study procedure
The students were given textual instructions by reading
a description of the tool. After stating that they

Fig. 14 Selecting a node representing the author Jock Mackinlay while applying a cluster detection algorithm based on nearest neighbors in the
graph to compute a group of co-authors. It should be noted that, although this subgraph might be selected manually, it might not be exact, and
a mixture of algorithmic and manual solutions is also possible
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understood the tool, they were given a tool demo by
using the experimenter’s laptop with the tool pre-
installed. The students were allowed to practice using
with the interactive features until they felt comfortable.
The experimenter asked some test questions to check if
they were able to work with the tool. Moreover, al-
though they had to fill in their personal details on a
form, their names were not requested for privacy rea-
sons, i.e., the recorded data were anonymized.

User tasks
The first task (T1) for the students was to familiarize
themselves with the visualization tool. As a second, but
major task (T2), they were shown a node group consist-
ing of 10 nodes in a node-link diagram depicted in a
force-directed layout. The corresponding 10 nodes are
highlighted in red to make them pre-attentively detect-
able. They were instructed to use the proposed inter-
active visualization tool to describe in which other node-
link layouts and adjacency matrix reordering the given
node group behaves similarly, that is, if they form a clus-
ter or a certain type of flow in a hierarchical layout. As
an add-on task (T3), they were instructed to report
whether the selected node group persisted over a longer
time period and in which layout or matrix the reordering
style could most easily be identified.

Results
The results are based on three tasks and qualitative feed-
back provided by the students.

Task T1: After 8 min and 13 s on average, they re-
ported familiarity with the tool, with the fastest student
requiring 5 min and 17 s and the slowest 17 min and 7 s.
Task T2: They identified the hierarchical layout as less

useful for this task, but found the node group in the cir-
cular layout to be the most visually effective. It took 1
min and 53 s on an average to solve this task.
Task T3: All students determined that the node group

exists over 11 time steps and then quickly decreases in
size for 3 time steps, returning again for 5 more time
steps before disappearing permanently. The best node-
link layout for this task was the force-directed layout,
which was Cuthill–McKee ordering because the nodes
in the group were placed close together and appeared as
a common cluster. The average response time for this
task was 2 min and 12 s.

Qualitative feedback
Apart from the task solutions, user opinions in the form
of qualitative feedback are also of interest. Moreover, the
students were instructed to think and talk aloud during
the running experiments. The experimenter noted the
verbal remarks and included them in the summary.
In particular, some students reported that they wished

to have more views placed next to each other, instead of
having just two to see the layouts and matrix arrange-
ments side-by-side. They also asked for more interaction
techniques, particularly for zooming in and out as well
as overview-and-detail or focus-and-context techniques.
Moreover, further label-based selection processes are re-
quired to better guide the exploration process, and it is

Fig. 15 Inspecting the dynamics of the selected group of co-authors of Jock Mackinlay from Fig. 14 in a force-directed node-link diagram
indicates the growth of the co-author network over time, from (T1) to (T5) (top row). In a corresponding adjacency matrix in different reordering
strategies, the group building can be further refined in a visual way (bottom row). However, in the matrix example here, it is quite difficult to
select individual nodes owing to the original dataset size. The selected co-author group in the node-link diagram was based on time step (T5)
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difficult to select individual pixels in the adjacency
matrix visualization. They also asked for a search func-
tion for nodes based on certain node properties or even
subcommunities, such as nearest neighbors in the graph.
Finally, a history function used to look back during the
exploration process was considered; however, this is a
challenging feature to implement.

Conclusion and future work
In its current state, the proposed web-based tool has
achieved its goal of rendering static and dynamic graph
visualizations, which can be used to detect patterns and
insights from the graph data by combining several lay-
outs and reorderings. The tool provides useful layouts,
interactions, and reordering strategies that help the user
achieve this. However, there are always aspects that can
be improved to make the proposed application even bet-
ter. Currently, the tool can only work with datasets in a
specific format, which is not user-friendly. To improve
this, the proposed application should support all possible
datasets or at least the most common ones. Although
the proposed tool works on touchscreen devices, there
are issues related to panning, zooming, and selecting ele-
ments. It would also be useful to extend the repertoire
of visual feature combinations, for example, by consider-
ing further node and edge properties as well as the top-
ology of the underlying graph structure. Moreover, an
even more thorough user study must be conducted to
understand the real potential or design flaws of the tool.
Eye tracking is a powerful technology for finding insight
into the visual attention patterns of human users.
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