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A projection-domain iterative algorithm for
metal artifact reduction by minimizing the
total-variation norm and the negative-pixel
energy
Gengsheng L. Zeng1,2

Abstract

Metal objects in X-ray computed tomography can cause severe artifacts. The state-of-the-art metal artifact reduction
methods are in the sinogram inpainting category and are iterative methods. This paper proposes a projection-
domain algorithm to reduce the metal artifacts. In this algorithm, the unknowns are the metal-affected projections,
while the objective function is set up in the image domain. The data fidelity term is not utilized in the objective
function. The objective function of the proposed algorithm consists of two terms: the total variation of the metal-
removed image and the energy of the negative-valued pixels in the image. After the metal-affected projections are
modified, the final image is reconstructed via the filtered backprojection algorithm. The feasibility of the proposed
algorithm has been verified by real experimental data.

Keywords: Analytical image reconstruction, Metal artifact reduction, Projection-domain iterative algorithm, X-ray
computed tomography

Introduction
The metal artifacts in X-ray computed tomography (CT)
are mainly due to the beam hardening effects [1–4]. The
linear attenuation coefficient in a material is a function
of the X-ray energy. X-ray CT systems normally use
polychromatic beams, and the various energy compo-
nents are not attenuated uniformly. The lower energy
component of X-ray spectrum is more easily to be atten-
uated or even completely adsorbed when traveling
through metals. The beam hardening effects make the
sinogram values deviate from the assumption that the
sinogram values are the line-integrals of the attenuation
coefficients in the object.
Many techniques are commonly used to reduce the

metal beam hardening effects. In clinical scans, the metal

materials and the X-ray source settings are known.
Model-based iterative algorithms [5–12] and iterative
segmentation-based interpolation methods [13–20] can
be used by taking the advantage of the available know-
ledge of the metals, the soft tissues, the bones, and X-ray
source settings.
In this paper, we consider a more challenging situation

where the objects of interest, the metal materials and the
X-ray source settings are all unknown. Thus, model-based
iterative reconstruction methods are not effective here.
There are other methods to be considered. Bayesian

algorithms, for example, the total variation (TV) norm
minimization can be considered [21–25]. The metal arti-
facts appear as bright or dark streaks, radiated from the
metals. The bright parts are the positive overshoots; the
dark parts are the negative undershoots. The negative
undershoots may result in negative image pixels. Our
proposed algorithm is to minimize the TV of the metal-
removed image [25] and the energy of the negative
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image pixels [26]. The algorithm variables are the metal
affected sinogram values.
We must point out that it is not straightforward to re-

flect the negative image pixel constraint in the sinogram
domain. It is not equivalent to setting the associated
sinogram values to zero or positive [26].

Methods
This paper is inspired by the two observations that the
metal artifacts often result in dark/bright streaks radiat-
ing from the metals [25] and negative image pixels
around the metals [26]. The streaking artifacts increase
the TV norm of the non-metal regions of the image.
The attenuation coefficients cannot be negative. These
two effects were dealt with in two papers, separately [16,
26]. The goal of this current paper is to combine these
two methods into one.
Let the measured sinogram (i.e., line integrals) be P,

which can be divided into two parts: the metal affected
part PM and the metal unaffected part PnotM. This separ-
ation can be readily achieved by performing a raw fil-
tered backprojection (FBP) reconstruction, thresholding,
and forward projection. The objective function is hence

Objectivefunction ¼ TðPÞ ¼ β1T 1 þ β2T 2

¼ β1 GfFðPÞg TV þ β2 minf0; FðPÞg 2
�������� ð1Þ

where the first term is the TV norm, and the second
term is the squared L2 norm. In Formula (1), F denotes
the FBP reconstruction operator, G is the operator that
removes the metals from the image, and β1 and β2 are
the parameters balancing the two norms. In the gradient
descent algorithm, β1 and β2 also act as the step sizes
(also, known as the relaxation factors).
We minimize this objective function with respect to

unknowns PM with a gradient descent algorithm. It is
noticed that neither of the two terms in Formula (1)
is differentiable. Sub-gradients are used to combat
this difficulty [27].
A sub-gradient is a ‘surrogate’ of the gradient: it coin-

cides with the gradient whenever a gradient exists, and it
generalizes the notion of gradient at points where the
function is non-differentiable. Let us consider a point of
interest and the function is non-differentiable at this
point. A sub-gradient is evaluated as follows. We find
the left-gradient by taking the limit from the left and the
right-gradient by taking the limit from the right, which
are also known as the directional gradients. Any values
between these two left and right values can be used as
the sub-gradient.
We now use the absolute function |x| to illustrate

how to find the sub-gradient. When x > 0, the sub-
gradient is the same as the gradient: 1. When x < 0,
the sub-gradient is the same as the gradient: −1.

When x = 0, the function |x| is non-differentiable.
The left-gradient is −1 and the right-gradient is 1.
The sub-gradient at x = 0 can be any value in the
interval [− 1, 1].
In our implementation, three values of β1 were tested: 0,

0.002 and 0.004; two values of β2 were tested: 0 and 5.

The FBP algorithm
In Formula (1), F(P) is a linear algorithm that can be de-
posed into two steps. The first step is to convolve the
sinogram P along the detector dimension with a convo-
lution kernel h(n):

h nð Þ ¼

1
4

if n ¼ 0;

−
1

nπð Þ2 if n is odd;

0 otherwise:

8>>><
>>>:

ð2Þ

The second step is the backprojection. Let the FBP re-
construction from P be X. If both P and X are repre-
sented in the vector forms, F(P) can be written as matrix
multiplication

X ¼ FP ð3Þ
where F is a matrix.
For a given threshold value t, a metal image is ob-

tained by modifying the image X. If a pixel in X is
greater than t, its value is set to 1, otherwise its value
is set to 0. The forward projection of X generates a
‘shadow’ in the projection domain. If the shadow
values are positive, the corresponding sinogram values
are called metal-affected projections, PM. If the
shadow values are zero, the corresponding sinogram
values are called metal-not-affected projections, PnotM.
The sinogram P is thus divided into two parts: PM
and PnotM. The projection values in PM are treated as
variables in the proposed algorithm.
In Formula (1), the metal removed FBP image,

G{F(P)} =G{X}, is almost the same as X, except that if a
pixel value is greater than t, its value is set to 0.
In Formula (1), min{0, F(P)} = min {0, X} is almost the

same as X, except that if a pixel value is positive, its
value is set to 0. Here, the ‘min’ function is an element-
wise function.

Optimization of the objective function (Formula 1) by the
gradient descent algorithm
A gradient descent algorithm to minimize the objective
function T(P) in Formula (1) can be expressed as

P kþ1ð Þ
M ¼ P kð Þ

M −D β1∇T 1 Pð Þ þ β2∇T 2 Pð Þ½ � ð4Þ
where the super script (k) is the iteration index. The pro-
jection vector P consists of two parts: the metal affected

Zeng Visual Computing for Industry, Biomedicine, and Art             (2022) 5:1 Page 2 of 11



part PM and the metal not-affected part PnotM. The metal
not-affected part PnotM does not get updated from iter-
ation to iteration. The matrix D in Formula (4) is a diag-
onal matrix with 0’s and 1’s, which discards the entries
in PnotM. The parameter β1 and β2 in Formula (4) con-
trols the step sizes of the gradient descent algorithm for
the two different norms, respectively. In Formula (4),
∇T1 is the gradient of the TV norm of the image with
the metals removed, and ∇T2 is the gradient of the en-
ergy of the negative pixels in the image. These two gra-
dients are calculated with respect to the projections P.
These two gradients are discussed further in the follow-
ing two sub sections.

Minimization of the first term in the objective function
(Formula 1)
Let Y =G{F(P)} =G{X} be the metal-removed FBP recon-
struction. The image Y is represented in a two-
dimensional array and yi,j is its pixel value at the ith row
and jth column. The TV norm of Y is defined as

T1 ¼
X

i; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi; j−yi; jþ1

� �2
þ yi; j−yiþ1; j

� �2
r

ð5Þ

The partial derivative of T1 with respect to pixel (i, j)
(if exists) is readily calculated as

Fig. 1 Reconstruction of bag #1. a Raw FBP; b TV-term only; c Non-negativity-term only; d Combined. Some artifacts are marked by the
red arrows
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ui; j ¼ ∂T1

∂yi; j

¼
yi; j−yi; jþ1

� �
þ yi; j−yiþ1; j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi; j−yi; jþ1

� �2
þ yi; j−yiþ1; j

� �2
r

þ yi; j−yi; j−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi; j−1−yi; j

� �2
þ yi; j−1−yiþ1; j−1

� �2
r

þ yi; j−yi−1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi−1; j−yi−1; jþ1

� �2
þ yi−1; j−yi; j
� �2

r

ð6Þ

When the quantity under a square root is zero, the
gradient ui,j is not well-defined. In this case, we use the
sub-gradient and assume the sub-gradient ui,j to be zero

ui; j ¼ 0 ð7Þ

The gradient of T1 given in Formula (6) is with respect
to the image pixels yi,j. However, the gradient decent al-
gorithm (Formula 4) requires the gradient of T1 be with
respect to the projections P.

Realizing that Y is in the image domain, the algorithm
variables are in the projection domain related by the
mapping

P ¼ AY ð8Þ

where, A represents the forward projection matrix. The
matrix A maps the image into its projections. This same
matrix A can map the gradient U into the projection do-
main as AU, where the entries of U are ui,j. We have

∇T 1 Pð Þ ¼ AU ð9Þ

Minimization of the second term in the objective function
(Formula 1)
Let Z =min {0, F(P)} = min {0, X} be the negative pixels in
the FBP reconstruction X. The energy of the negative
image pixels is the square of the L2 norm of Z given as

Fig. 2 Reconstruction of bag #2. a Raw FBP; b TV-term only; c Non-negativity-term only; d Combined. Some artifacts are marked by the red arrows
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T2 ¼ Zk k22 ¼ min 0; FPf gk k22 ð10Þ

To find the gradient ∇T2(P) , that is, ∂T2/∂pj, is not
straightforward, because the ‘min’ function in Formula
(10) makes T2 non-differentiable. We can use the subdif-
ferential concept to find the gradient of ∂T2/∂pj as [27]

∇T 2 ¼ 2FT min 0; FPf g ¼ 2FTZ ð11Þ

where FT represents forward projection followed by
ramp filtering. The operator FT maps an image into the
projection domain.

Proposed gradient descent algorithm to estimate PM
Combining the gradients above, the proposed gradient
descent iterative algorithm (Formula 4) to estimate PM
can given as

P kþ1ð Þ
M ¼ P kð Þ

M −D β1 tanh AUð Þ þ β2 FTZ
� � ð12Þ

where tanh(∇T1) is used in place of ∇T1 in Formula (4).
The purpose of the hyperbolic tangent function ‘tanh’ is
to hard limit the TV gradient values, making the itera-
tive algorithm more stable.
The proposed algorithm is different from the com-

monly used iterative algorithms in the sense that the
sinogram values in a common iterative reconstruction
algorithm are never altered. Also, the proposed algo-
rithm does not have a data fidelity term in the objective
function (Formula 1). Our final image is obtained by the
FBP algorithm, after PM is modified. The initial value of
the metal affected part PM is the measured value.
We tested the proposed algorithm with some un-

known airport bags, which contained some unknown
metals. The projection sinograms were provided by the
US Department of Homeland Security. The data sets
were acquired with unknown kVp and unknown current

Fig. 3 Reconstruction of bag #3. a Raw FBP; b TV-term only; c Non-negativity-term only; d Combined. Some artifacts are marked by the red arrows
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settings. The original sinograms were converted into
parallel-beam geometry with 180 views over 180°
and with 597 detection channels (i.e., detector bins).

Results
Figures 1, 2, 3, 4 and 5 show the reconstruction results
of 5 different unknown airport bags. Each figure consists
of 4 images: the original raw FBP reconstruction; the
TV-norm-only (with β1 = 0.004 and β2 = 0) reconstruc-
tion; the negativity-pixel-energy-only (with β1 = 0 and
β2 = 5); the combined reconstruction (with β1 = 0.004
and β2 = 5). All images have the same display window.
Black color represents negative values and white color
represents large positive values. In order to visualize the
metal artifacts, the display window is determined by the
raw FBP reconstruction using the original measured
sinogram. The display window is airport bag specific.
The 1/3 of the maximum raw FBP image value is
mapped to the gray level 255 (white). Any value larger is

set to 255. The metal pixels are much brighter than
other pixels in the image. If we do not clip the very
bright metal pixels, we cannot see other structures in
the image. The minimum raw FBP value (which is nega-
tive) is mapped to the gray level 0 (black). The mapping
is linear in the range below 1/3 of the maximum value.
All 4 images in the figure use the same gray-scale map-
ping. Therefore, back pixels are negative.
The number of iterations for all studies in this paper

was 400 in the gradient descent algorithm. The image
array size was 420 × 420, and the pixel size was 0.92 mm.
The proposed algorithm was implemented using
MATLAB®, and the computational time for 400 itera-
tions was 145 s.
Because the ground truth is unknown to us, it is in-

appropriate to perform quantitative evaluations. In this
paper, we only make human visual inspections on the
reconstructions, focusing on the severeness of the arti-
facts. Two evaluation metrics were used. One metric

Fig. 4 Reconstruction of bag #4. a Raw FBP; b TV-term only; c Non-negativity-term only; d Combined. Some artifacts are marked by the red arrows
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was the TV norm of the reconstructed image with
metals removed. The other metric was the energy of the
negative pixels in the reconstructed image.
It is seen that all raw FBP images (shown at the upper-

left conner) contain severe black streaking artifacts, indi-
cating streaks of negative values. When the objective
function only has the TV-norm term, that is, β2 = 0,
most black streaks are removed from the images (shown
at the upper-right conner); unfortunately, many low-
contrast structures are lost at the same time. The lower-
left images are obtained using only the negative-pixel-
energy minimization (i.e., β1 = 0), and the black streaking
artifacts are effectively removed from the resulting re-
constructions. Compared with the upper-right images,
the lower-left images look noisier and may contain some
new bright streaking artifacts. If both of the two terms
are used in the objective function (Formula 1), the re-
sultant images are shown at the lower-right conner,

which enjoy the benefits from both terms in the object-
ive function (Formula 1).
In Fig. 5, the metal reduction methods fail to remove

the dark streaking artifacts. On the other hand, Fig. 6
shows better results for the same airport bag. The differ-
ent results in these two figures are mainly due to the dif-
ferent setup in metal image segmentation. In Figs. 1, 2,
3, 4 and 5, the FBP image pixels are segmented into the
metal image if the image values are greater than t = 1/3
of the maximum image value. However, in Fig. 6, the
FBP image pixels are segmented into the metal image if
the image values are greater than 1/10 of the maximum
image value. The change of the segmentation threshold
results in different metal maps, as illustrated in Fig. 7.
After changing the threshold value t from 1/3 to 1/10,
we must change β1 = 0.004 to a much smaller value β1 =
0.002, otherwise the resultant image is too smooth and
lots of image details disappear.

Fig. 5 Reconstruction of bag #5. a Raw FBP; b TV-term only; c Non-negativity-term only; d Combined. Some artifacts are marked by the red arrows
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Tables 1, 2, 3, 4, 5 and 6 list the maximum and mini-
mum values for each image in Figs. 1, 2, 3, 4, 5 and 6,
respectively. It is noticed that the images generated from
the processed sinograms still have negative image pixels.
The residual negative pixels are most likely due to the
angular aliasing artifacts because we use only 180 views
in our sinogram data. A typical X-ray CT scan has ap-
proximately 1000 views. The tables also list the evalu-
ation metrics: the TV norm of the reconstructed image
with metals removed and the energy of the negative
pixels in the reconstructed image.
Figure 8 compares bag #1 sinograms before and after

processing. Figure 8(a) is for the case of β1 = 0.004 and
β2 = 5. Figure 8(b) represents the raw measurements.
The difference image [(a) – (b)] is shown at Fig. 8(c). It

is observed that most sinogram values are not altered by
the iterative algorithm.

Discussion
This paper combines two methods into one. These two
methods use two different objective functions. They try
to reduce the metal artifacts by using two different strat-
egies. One method tries to reduce the artifacts that have
oscillations; the other method tries to reduce the arti-
facts that have negative overshoots. By combining these
two methods, we have a better chance to reduce metal
artifacts that have both oscillating and negative over-
shoots features. One potential limitation is that those
two methods may work in the opposite ways, making
none of the methods effective. Another potential limita-
tion is that the combined method has some hyper

Fig. 6 Reconstruction of bag #5 (New threshold value to segment the metal image and new β1 = 0.0002). a Raw FBP; b TV-term only; c Non-
negativity-term only; d Combined
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Fig. 7 Metal images for bag #5. a The segmentation threshold t = 1/3 of the maximum raw FBP image pixel value; b The segmentation threshold
t = 1/10 of the maximum raw FBP image pixel value

Table 1 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #1

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.1591 1.2781 1501.4 3.1231

1000 0.004 0 −0.1365 1.0643 835.6338 0.3426

1000 0 5 −0.0133 1.1837 1014.6 0.0631

1000 0.004 5 −0.0134 1.1408 869.5945 0.0712

Table 2 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #2

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.3000 1.3420 1148.4 8.3468

1000 0.004 0 −0.11825 1.1570 834.2642 3.1681

1000 0 5 −0.0196 1.3585 1150.3 0.1340

1000 0.004 5 −0.0206 1.3130 906.2427 0.1476

Table 3 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #3

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.3776 1.2154 1144.3 4.7415

1000 0.004 0 −0.0843 1.0329 891.2476 1.6540

1000 0 5 −0.0191 1.1270 1025.8 0.3326

1000 0.004 5 −0.0223 1.0872 964.3871 0.3294

Table 4 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #4

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.1868 1.3204 1379.1 1.9616

1000 0.004 0 −0.0757 1.2775 1006.9 0.4434

1000 0 5 −0.0155 1.3992 1226.9 0.1255

1000 0.004 5 −0.0164 1.4060 1062.4 0.1379

Table 5 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #5

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.0347 0.4676 472.6624 0.3366

1000 0.004 0 −0.0371 0.5137 220.4515 0.0558

1000 0 5 −0.0340 0.5487 225.6903 0.0201

1000 0.004 5 −0.0344 0.5041 220.1787 0.0222

Table 6 Values of maximum, minimum, metal-free region TV,
and NPE in reconstructions of bag #5 (New threshold value to
segment the metal image and new β1 = 0.0002)

Iterations β1 β2 Min Max TV NPE

0, raw FBP NA NA −0.0347 0.4676 472.6624 0.3366

1000 0.0002 0 −0.0342 0.5251 165.2475 0.0190

1000 0 5 −0.0030 0.5243 180.0589 0.00015141

1000 0.0002 5 −0.0031 0.5252 144.7916 0.0011
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parameters β1 and β2 to be adjusted. There are no gen-
eral rules to set them.
The ratio of these two parameters determines which

objective function should be more dominating. Their
values also affect the convergence rate of the gradient
descent algorithm. Usually, larger values of β1 and β2 re-
sult in fast convergence. If their values are too large, the
gradient descent algorithm may diverge. There is no
clear relationship between the beta values and the
threshold value. The values of β1 and β2 should be set
for every new data set and every new object. The value
of β2 may not be sensitive to the data set or object.
There are no general rules how to set these two hyper
parameters. It is observed from Tables 1, 2, 3, 4, 5 to 6
that the TV norm values T1 are much larger than the
energy of negative pixel energy (NPE) values T2. There-
for, β1 is much smaller than β2.
The setting of the hyper parameters is data

dependent. One setting works well for one object but
does not work well for another object. This newer
value of β1 for bag #5 did not work well for other
data sets. The hyper parameters are set by trial-and-
error for each case.

From our experimental results, there is no significant
difference between the results of non-negativity-term
only and combined. The minimum and maximum values
of the two results are also very close. This observation
implies that among the two methods, the method to re-
duce the negative overshoot is more effective than the
TV minimization method for the cases presented.

Conclusions
This paper proposes a projection-domain iterative algo-
rithm to estimate metal affected projections using an
image-domain objective function. The objective function
does not have a data fidelity term. It consists of the TV
norm and the energy of the negative pixels. Real CT
scans with unknown objects and unknown metals are
used to test the feasibility of the proposed algorithm.
The metals cause severe streaking artifacts in the raw
FBP reconstructions. Those streaking artifacts are suc-
cessfully removed by the proposed algorithm.
Results of two special cases, β1 = 0 and β2 = 0, are also

compared. When β2 = 0, the algorithm only minimizes
the image TV norm. The images with TV norm
minimization tend to be oversmoothed, and some low

Fig. 8 Sinograms of bag #1. a Processed with β1 = 0.004 and β2 = 5; b Raw; c Difference
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contrast structures may get lost. When β1 = 0, the algo-
rithm only minimizes the image NPE. The images with
NPE minimization contain more low contrast structures
but may be noisy. When both terms are used in the ob-
jective function (1), the final images are more balanced
between details and noise control. In all three cases dis-
cussed above, the metal streaking artifacts are effectively
reduced.

Abbreviations
CT: Computed tomography; FBP: Filtered backprojection; NPE: Negative pixel
energy; TV: Total variation
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