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Abstract

If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series
expansion of an entire function converges at every finite point in the complex plane. The analytic continuation
theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small
neighborhood. Trying to obtain such an exact Taylor expansion is difficult. This paper proposes an iterative
algorithm to extend the measured frequency components to unmeasured regions. Computer simulations show
that the proposed algorithm converges very slowly, indicating that the problem is too ill-posed to be practically
solvable using available methods.

Keywords: Analytic continuation, Entire function, Iterative projections onto convex sets algorithm, Image
reconstruction, Limited angle tomography

Introduction
In medical or industrial imaging, a stable image recon-
struction depends on sufficient data acquisition. The
data acquisition geometry required for a stable recon-
struction is different from that demanded theoretically.
As pointed out in Naterer’s book [1], a stable recon-
struction in parallel-beam imaging requires the angular
detector coverage of 180°. However, it is theoretically
possible to perform limited-angle tomography, for ex-
ample, with a smaller angular coverage of just 10°. As
stated in ref. [1], it is an extremely ill-posed problem to
reconstruct an image from a very small angular cover-
age. In other words, it is practically impossible to stably
reconstruct an image with a very small angular coverage
with noisy measurements. The ill-condition characters
were mathematically established by studying the
spectrum of the singular values of the limited data tom-
ography [1].
The theoretical foundation of image reconstruction

with a very small angular coverage is the Paley-Wiener

theorem (see Theorem 7.2.1 in ref. [2]) and analytic ex-
tension (or continuation) (see Chapter V in ref. [3]). The
Paley-Wiener theorem states that if a function has a fi-
nite support, then its Fourier transform is an entire
function. In complex analysis, an entire function, also
known as an integral function, is a complex-valued func-
tion that is holomorphic (analytic) on the whole com-
plex plane. An entire function F has a power series
expansion (i.e., Taylor expansion) in z that converges at
every finite point in the complex plane:

F zð Þ ¼
X∞
k¼0

F kð Þ z0ð Þ
k!

z−z0ð Þk ð1Þ

where z0 is any complex number. This Taylor expansion
plays an important role in analytic extension. The con-
cept of analytic extension implies that if an entire func-
tion F(z) is known at a point z0 and its neighborhood, its
Taylor series is known and consequently F(z) is deter-
mined on entire complex plane by this Taylor series ex-
pansion. This theory looks good on paper but is pretty
much useless in practice because we do not know how
to obtain the various orders of the derivatives of F(z)
exactly, for the finite difference approximation is not ac-
curate enough.
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Let f(x) be a one dimensional (1D) function with a fi-
nite support on [−A, A]. Its 1D Fourier transform is

FðωÞ ¼
ZA

−A

f ðxÞe−iωxdx ð2Þ

where ω is a real number representing the radian fre-
quency, and F(ω) is a complex function with a single real
variable ω. If we replace ω by a complex variable z = u +
iv, Formula (2) becomes an entire function defined on
the complex plane:

FðzÞ ¼
ZA

−A

f ðxÞe−izxdx ð3Þ

It can be verified (see Appendix) that the Cauchy–Rie-
mann equations are satisfied and F(z) in Formula (3) is
indeed an entire function on the complex plane [4]. If
F(z) is measured at a point’s neighborhood, for example,
at z = 0, F(z) is determined on the whole complex plane,
and hence f(x) is determined (in theory).
Figure 1 shows a two dimensional (2D) Fourier space.

The shaded wedge areas are measured. The center of the
Fourier space is the low frequency region. The outer
area is the high frequency region. Along the horizontal
dashed line shown in Fig. 1, the lower frequency compo-
nents are measured, while the higher frequency compo-
nents are not measured. On the other hand, if we draw a
vertical line (not passing through the origin), the higher
frequency components are measured, while the lower

frequency components are not measured along this ver-
tical line.
In tomographic imaging, the line integrals along one

direction of a 2D section can be considered as a 1D
function with a finite support. A collection of such 1D
functions at various angles forms the sinogram. We take
the 1D Fourier transform row-by-row of the sinogram
and map them to the 2D Fourier space according to the
Fourier Slice Theorem (i.e., the Central Slice Theorem)
[5]. The 2D Fourier space is completely covered if the
scanning angular coverage is 180°. If the angular cover-
age is a smaller, only wedge-shaped regions are mea-
sured in the 2D Fourier space as shown in Fig. 1, where
the dashed line illustrates the 1D Fourier transform F of
a sinewave-encoded 1D line-integrals with a finite sup-
port. The 1D function F is an entire function and is par-
tially available. We wish to estimate the unmeasured
parts of F. In a row-by-row manner, the whole 2D
Fourier space is estimated, and the spatial domain
counterpart can be reconstructed. In this case, the low-
frequency components are measured, and the high-
frequency components are to be estimated.
Alternatively, we can draw a vertical. We will have a

different estimation problem. The high-frequency com-
ponents are measured, and the low-frequency compo-
nents are to be estimated.

Methods
Problem statement
The problem we are going to solve in this paper is de-
scribed as follows. We assume that the spatial-domain

Fig. 1 A situation of limited angle data acquisition is shown in the 2D Fourier domain. The shaded area represents measured region. If a
horizontal line is considered, the low frequencies are measured, while the high frequencies are not. On the other hand, if a vertical line is
considered, the high frequencies are measured, while the low frequencies are not
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object has a finite support. The Fourier transform of this
object is determined by is partial measurements in the
Fourier domain. The goal is to estimate the frequency
components in the unmeasured regions.

Proposed algorithm
Since the Taylor expansion method is not practical,
we need to develop something more practical. We are
inspired by an iterative algorithm in the theory of an-
tenna synthesis [6] and propose an iterative algorithm
to extend F from measured region to unmeasured re-
gions. The algorithm is an ad hoc “projections onto

convex sets” (POCS) algorithm [7]. The POCS algo-
rithms are a family of iterative algorithms that bounce
back and forth between different domains, to enforce
the solution to satisfy the restrictions in every
domain.
The proposed algorithm is an iterative procedure, al-

ternating between the Fourier domain and the spatial
domain in each iteration. In the spatial domain, this ob-
ject is denoted as f. The Fourier transform of this object
is denoted as F in the Fourier domain.
The partial measurements of the object are acquired

in the Fourier domain. In the proposed iterative

Fig. 2 The flow chart of the proposed iterative algorithm
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algorithm, an initial condition is set in the Fourier do-
main by assuming the unmeasured data be zero. At this
point, the object is referred to as “projecting onto the
Fourier domain,” which implies that the Fourier-domain
constraints are satisfied. This is the halfway through the
first iteration.

The second half of the first iteration is performed
in the spatial domain. We take the inverse Fourier
transform of the Fourier-domain data prepared in the
first half, to obtain an image in the spatial domain.
After the inverse Fourier transform, the spatial-
domain image is complex, having both the real part

Fig. 3 Reconstruction of the Shepp-Logan phantom with noiseless data. Row 1: (L) the true phantom; (R) the result with the initial condition.
Row 2: (L) the result with 102 iterations; (R) the result with 104 iterations. Row 3: (L) the result with 106 iterations; (R) the result with 108 iterations
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and the imaginary part. We require that the spatial-
domain image is non-negative and has a finite sup-
port. To make the image non-negative, we take the
Euclidean norm of the data, which is the square-root
of the sum of the real part square and the imaginary
part square. If the support is known, set the image
values to zero outside the support. At this point, the
object is referred to as “projecting onto the spatial
domain,” which implies that the spatial-domain con-
straints are satisfied. This is the second halfway
through the first iteration. The first iteration is
completed.
We must realize that the second half way’s action may

alter the results from the action in the first half. In other
words, the Fourier-domain requirements may be no lon-
ger satisfied. This is the reason that the second iteration
is required.
After the first half of the second iteration, the Fourier-

domain constraints are satisfied. Unfortunately, the
spatial-domain requirements may be somewhat
destroyed. Then the second half is performed for the
second iteration, to make the spatial-domain constraints
satisfied.
Hopefully, after many iterations, both the Fourier-

domain constraints and the spatial-domain constraints
are somewhat satisfied.
In summary, the suggested algorithm consists of the

following steps with spatial-domain function f(x) and
Fourier-domain counterpart F(ω). Initially, the Fourier-
domain function F(ω) is set to 0.
Step 1: In the Fourier domain, enforce F(ω) to the

known measured value if F(ω) is measured at ω. Other-
wise, the value of F(ω) remains the same as before.
Step 2: Take the inverse Fourier transform of the func-

tion F(ω) obtained in step 1. Set f(x) to the norm of the
inverse Fourier transform of F(ω).
Step 3: Take the Fourier transform of the f(x) obtained

in step 2, obtaining a new Fourier-domain function F(ω).
Go back to step 1.
[Repeat the above 3 steps].
Step 1 enforces the Fourier-domain measurements.

Step 2 enforces the spatial-domain real and non-
negativity constraints. This algorithm is much easier to
implement than the Taylor expansion method. The Fou-
rier transform and the inverse Fourier transform can be
readily implemented by the fast Fourier transform and
the inverse fast Fourier transform [8]. Figure 2 shows a
flowchart for the proposed algorithm.

Results
A noiseless 2D Shepp-Logan phantom computer simula-
tion was performed [9]. The image size was 256 × 256.
The simulation was only performed in the vertical (y)
direction. The measured frequency components with

absolute index values from zero up to 15. Various iter-
ation numbers were tested. The images for the noiseless
study are shown in Fig. 3. The image with the initial
condition was obtained by using the 15 lowest frequency
components. The restored images in the second row
were obtained by the proposed iterative algorithm. The
corresponding mean squared errors (MSEs) for the im-
ages are listed in Table 1. No noise was added to the
measurements in Fig. 3.
Noisy study results with Gaussian white noise are

shown in Fig. 4. The signal-to-noise ratio was set at ten.
These noisy images indicate that the reconstruction
problem with incomplete data is extremely unstable and
may not find any applications in the real world.
The algorithm was very slow to converge. In other

words, we do not see many changes or improvements
between iterations. Due to incomplete data, the images
did not converge to the true image. The very slow con-
vergence trend can also be observed from the MSE
values in Tables 1 and 2, for the noiseless and noisy
cases, respectively. When the iteration was as high as
108, the algorithm was still not converged. This slow
convergence is an indicator that the inverse problem is
severely ill-posed.
A 1D function simulation was performed with 108 iter-

ations. This 1D function was ‘randomly’ generated, con-
sisting of 1024 points, as shown in Fig. 5. Its frequency
spectrum (i.e., the magnitude of its Fourier transform) is
shown in Fig. 6. In the frequency domain, 30 lowest fre-
quency points were measured. We first took the 1024-
point Fourier transform of the simulated true 1D ‘ran-
dom’ function. The Fourier transform of the initial con-
dition (shown as Fig. 7) was obtained by setting all 1024
– 30 = 994 frequency components to zero except the 30
lowest frequency points. The result after 107 iterations is
shown in Fig. 8. The curves in Figs. 5, 7, and 8 are in the
spatial domain; the curve in Fig. 6 is in the frequency
domain.

Table 1 MSEs for the Shepp-Logan phantom study without
noise. Computation times are also reported

Iteration number MSE Time (s)

Initial 594.98

10 433.4856 27.978506

102 341.7619 28.284021

103 286.0546 27.900569

104 253.1430 36.472132

105 232.3008 53.552202

106 218.0490 283.494466

107 207.5428 2551. 410,758

108 199.8592 24,890.904604
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No noise was added to the 1D data. The conver-
gence rate was very slow, as indicated by the MSEs
are listed in Table 3. However, one can observe some
improvements from the initial condition to the 108th
iteration result. If a little noise is added (with a

signal-to-noise ratio being ten), the results (as shown
in Fig. 9) from high iterations are very noisy and not
usable.
Another 1D function simulation was also performed

with 107 iterations. This different 1D function was a

Fig. 4 Reconstruction of the Shepp-Logan phantom with noisy data. Row 1: (L) the true phantom; (R) the result with the initial condition. Row 2:
(L) the result with 102 iterations; (R) the result with 104 iterations. Row 3: (L) the result with 106 iterations; (R) the result with 108 iterations
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Gaussian curve, consisting of 1024 points. Figures 10,
11, 12, 13 and 14 are the counterparts of Figs. 5, 6,
7, 8 and 9, respectively. Table 4 is the counterpart of
Table 3. Table 4 reports much better results than
Table 3.
The restoration of the first curve used 30 measure-

ments in the frequency domain; the restoration of
the first curve used 15 measurements in the

frequency domain. It is interesting to notice that the
restoration of the second curve is much more accur-
ate than the first curve, by using half amount of
measurements.
When comparing the frequency spectra Fig. 6 vs

Fig. 11, the spectrum in Fig. 11 is smoother, while
the spectrum in Fig. 6 has many sharp oscillations.
This observation indicates that the ill-condition of
the function extension depends on the function
itself.
All computer simulations were performed on a Linux

server with an Intel® Xeon® CPU, 2.40 GHz, and a RAM
of 128 GB. The algorithm has a slow convergence rate
and does not converge to the true values. The algorithm
is terminated when a specified iteration number is
reached. The computation times are reported in Tables
1 and 2.

Discussion
To our knowledge, the previous algorithms assumed
unmeasured data to be zero. In other words, the re-
sults of the previous algorithm are our initial im-
ages in the proposed algorithm. Ref. [10] made an
attempt to estimate the unmeasured data through
over-sampling in the measured region. However,

Table 2 MSEs for the Shepp-Logan phantom study with noise.
Computation times are also reported

Iteration number MSE Time (s)

Initial 625.90

10 465.5 27.634184

102 460.4 27.595421

103 1044.5 27.803038

104 2269.4 31.491420

105 3520.0 57.319462

106 4251.0 319.610876

107 4049.3 3040.756353

108 4081.7 29,169.871348

Fig. 5 The true ‘random’ function
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Fig. 6 The frequency spectrum of the true ‘random’ function

Fig. 7 The spatial-domain function obtained from the lowest 30 frequency components of the ‘random’ function
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the method in ref. [10] does not apply here, be-
cause our data is not over-sampled in the measured
range.
After a large number of iterations, the results are not

much different from the initial data. This implies a very
slow convergence rate if the algorithm converges at all.
This can be considered as an ill-condition effect. It is an
open question if there exists a strategy to improve the
ill-condition without measuring more data. Measuring
more data is an obvious method to make a problem less
ill-posed.

Conclusions
We propose an iterative algorithm trying to extend the
measured frequency components to unmeasured fre-
quency components. The algorithm is in the POCS
form, alternating between the spatial and frequency do-
mains. In the frequency domain, it enforces the mea-
sured frequency components. In the spatial domain, it
enforces the real and nonnegativity constraints.
The computer simulations imply that the conver-

gence rate of this iterative algorithm is very slow. A
very slow convergence rate is a sign that the prob-
lem of the analytic continuation is severely ill-posed
[6]. Due to the slow convergence rate, there are not
many changes and improvements over iterations. In
the noiseless cases, the final image looks similar to
the initial image; almost no high frequency compo-
nents are recovered. When there is little noise, the
results are too noisy to be useful. The ill-condition
nature of the problem depends on the function it-
self. For some better-behaved functions, more accur-
ate results can be obtained with fewer
measurements than some worse-behaved functions.
Complete recovering the unmeasured data seems
hopeless with the methods we know so far. The
problem is still open.

Fig. 8 Restored the ‘random’ function after 107 iteration of suggested algorithm

Table 3 MSEs for the 1D ‘random’ curve study with noiseless
data

Iteration number MSE

Initial 1.5 × 10−3

102 9.3 × 10−4

104 6.8 × 10−4

106 3.7 × 10− 4

108 3.5 × 10−4
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Fig. 9 Restored the ‘random’ function after 107 iteration of suggested algorithm using noisy data

Fig. 10 The true Gaussian function
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Fig. 11 The frequency spectrum of the true Gaussian function

Fig. 12 The spatial-domain function obtained from the lowest 30 frequency components of the Gaussian function
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Fig. 13 Restored the Gaussian function after 107 iteration of suggested algorithm

Fig. 14 Restored the Gaussian function after 107 iteration of suggested algorithm using noisy data
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Appendix
Verification that the F(z) defined in Formula (3) is an
entire function.
Here, the F(z) defined in Formula (3) is rewritten as

FðzÞ ¼
ZA

−A

f ðtÞe−iztdt ðA1Þ

Let z = x + iy, Formula (A1) becomes

F zð Þ ¼ u x; yð Þ þ iv x; yð Þ

¼
ZA

−A

f tð Þeyt cos xtð Þdt−i
ZA

−A

f tð Þeyt sin xtð Þdt A2ð Þ

where

u x; yð Þ ¼
ZA

−A

f tð Þeyt cos xtð Þdt A3ð Þ

v x; yð Þ ¼ −
ZA

−A

f tð Þeyt sin xtð Þdt A4ð Þ

It is straightforward to verify that

∂u x; yð Þ
∂x

¼ −
ZA

−A

tf tð Þeyt sin xtð Þdt A5ð Þ

∂v x; yð Þ
∂x

¼ −
ZA

−A

tf tð Þeyt sin xtð Þdt A6ð Þ

∂u x; yð Þ
∂y

¼
ZA

−A

tf tð Þeyt cos xtð Þdt A7ð Þ

∂v x; yð Þ
∂x

¼ −
ZA

−A

tf tð Þeyt cos xtð Þdt A8ð Þ

Formulas A5-A8 satisfy the Cauchy-Riemann equations

∂u
∂x

¼ ∂v
∂y

ðA9Þ

∂u
∂y

¼ −
∂v
∂x

ðA10Þ

Abbreviations
1D: One dimensional; 2D: Two dimensional; MSE: Mean squared error;
POCS: Projections onto convex set

Acknowledgements
Not applicable.

Author’s contributions
GLZ is the only author. The author read and approved the final manuscript.

Funding
This research is partially supported by NIH, No. R15EB024283.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author has any competing interests in the manuscript.

Received: 9 July 2021 Accepted: 29 November 2021

References
1. Natterer F, Wübbeling F (2001) Mathematical methods in image

reconstruction. SIAM monographs on mathematical modelling and
computation 5, SIAM, Philadelphia, pp 472–482. https://doi.org/10.1137/1.
9780898718324

2. Strichartz RS (1994) A guide to distribution theory and fourier transforms.
CRC Press, Boca Raton

3. Gamelin TW (2001) Complex analysis. Springer, New York. https://doi.org/1
0.1007/978-0-387-21607-2

4. Martin D, Ahlfors LV (1966) Complex analysis. McGraw-Hill, New York
5. Zeng GL (2010) Medical image reconstruction: a conceptual tutorial. Springer-

Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05368-9
6. Ramm AG (1991) Inversion of limited-angle tomographic data. Comp Math

Appl 22(4–5):101–111. https://doi.org/10.1016/0898-1221(91)90135-Q
7. Bauschke HH, Borwein JM (1996) On projection algorithms for solving

convex feasibility problems. SIAM Rev 38(3):367–426. https://doi.org/10.113
7/S0036144593251710

8. Heideman MT, Johnson DH, Burrus CS (1984) Gauss and the history of the
fast Fourier transform. IEEE ASSP Mag 1(4):14–21. https://doi.org/10.1109/MA
SSP.1984.1162257

9. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section.
IEEE Trans Nucl Sci 21(3):21–43. https://doi.org/10.1109/TNS.1974.6499235

10. Zeng GL, Li Y (2021) Analytic continuation and incomplete data tomography. J
Radiol Imaging 5(2):5–11. https://doi.org/10.14312/2399-8172.2021-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Table 4 MSEs for the 1D Gaussian curve study with noiseless
data

Iteration number MSE

Initial 1.4 × 10− 4

102 1.7 × 10−5

104 6.3 × 10−6

106 2.2 × 10− 6

108 1.4 × 10−6

Zeng Visual Computing for Industry, Biomedicine, and Art             (2022) 5:4 Page 13 of 13

https://doi.org/10.1137/1.9780898718324
https://doi.org/10.1137/1.9780898718324
https://doi.org/10.1007/978-0-387-21607-2
https://doi.org/10.1007/978-0-387-21607-2
https://doi.org/10.1007/978-3-642-05368-9
https://doi.org/10.1016/0898-1221(91)90135-Q
https://doi.org/10.1137/S0036144593251710
https://doi.org/10.1137/S0036144593251710
https://doi.org/10.1109/MASSP.1984.1162257
https://doi.org/10.1109/MASSP.1984.1162257
https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.14312/2399-8172.2021-2

	Abstract
	Introduction
	Methods
	Problem statement
	Proposed algorithm

	Results
	Discussion
	Conclusions
	Appendix
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher’s Note

