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Abstract

This paper introduces a comparative analysis of the proficiencies of various textures and geometric features in the
diagnosis of breast masses on mammograms. An improved machine learning-based framework was developed for this
study. The proposed system was tested using 106 full field digital mammography images from the INbreast dataset,
containing a total of 115 breast mass lesions. The proficiencies of individual and various combinations of computed
textures and geometric features were investigated by evaluating their contributions towards attaining higher classification
accuracies. Four state-of-the-art filter-based feature selection algorithms (Relief-F, Pearson correlation coefficient,
neighborhood component analysis, and term variance) were employed to select the top 20 most discriminative features.
The Relief-F algorithm outperformed other feature selection algorithms in terms of classification results by reporting 85.2%
accuracy, 82.0% sensitivity, and 88.0% specificity. A set of nine most discriminative features were then selected, out of the
earlier mentioned 20 features obtained using Relief-F, as a result of further simulations. The classification performances of
six state-of-the-art machine learning classifiers, namely k-nearest neighbor (k-NN), support vector machine, decision tree,
Naive Bayes, random forest, and ensemble tree, were investigated, and the obtained results revealed that the best
classification results (accuracy = 90.4%, sensitivity = 92.0%, specificity = 88.0%) were obtained for the k-NN classifier with
the number of neighbors having k = 5 and squared inverse distance weight. The key findings include the identification of
the nine most discriminative features, that is, FD26 (Fourier Descriptor), Euler number, solidity, mean, FD14, FD13,
periodicity, skewness, and contrast out of a pool of 125 texture and geometric features. The proposed results revealed
that the selected nine features can be used for the classification of breast masses in mammograms.
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Introduction
Breast cancer continues to be one of the deadliest dis-
eases. It is caused by the invasion of abnormal cells
across the usual boundaries due to uncontrolled growth
and division [1]. According to the latest statistics, female
breast cancer remains a significant hurdle, with an esti-
mated 2.26 million new cancer cases, accounting for

nearly 24.5% of the 9.22 million new cancer cases diag-
nosed among women in 2020. Breast cancer has sur-
passed lung cancer in terms of the cause of mortality
among women, accounting for 15.5% of the total 4.43
million deaths in women of all age groups due to cancer
[2]. Early detection of breast cancer is the only entity
that can help reduce the death rate [3]. Screening using
mammogram images is still considered the best, most
reliable, and economical method for the detection of
early signs of breast cancer. Radiologists must carefully
examine mammogram images to detect abnormalities
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[4]. However, the success and widespread adoption of
mammography has drastically increased the workload of
radiologists. Due to this increased workload, even expert
radiologists can miss a considerable number of abnor-
malities or can misinterpret abnormalities that may in-
crease the number of false-positive and false-negative
reports. To resolve these issues, computer-aided diagno-
sis (CAD) systems are used by radiologists as secondary
readers [5]. Generally, radiologists look for four different
types of abnormalities in mammogram images, namely
masses, microcalcifications, architectural distortions, and
asymmetric breast tissues, as early signs of breast cancer
[6]. Among these, masses and microcalcifications are the
most frequently occurring types of abnormalities, any
other types of abnormalities are usually found in rare
cases. It should also be noted that the diagnosis of
masses is a more challenging task than that of micro-
calcifications [3]. Moreover, successful CAD systems
have already been clinically approved for the diagnosis
of microcalcifications. As a result of this, CAD systems
for breast masses are attracting considerable research
interest.
Generally, the diagnosis of breast masses involves the

detection and classification of breast masses. Masses are
generally characterized by their shape, margin, and tex-
ture. Benign masses possess round and oval shapes with
well-circumscribed and smooth boundaries as opposed
to malignant masses, which usually possess irregular
shapes with rough, ill-defined, and speculated boundar-
ies [7]. Significant differences can also be seen between
the texture of benign and malignant masses, with the
former being mostly smooth and homogeneous and the
latter having a heterogeneous and rough texture [8].
So far, numerous researchers in the literature have

made significant contributions to the analysis of texture
and geometry-based features. For instance, Mudigonda
et al. [9] compared the effectiveness of two sets of fea-
tures, gradient-based and texture-based, for the classifi-
cation of breast masses. The best classification accuracy
of 82.1% with 0.85 as an area under the receiver operat-
ing characteristics curve has been reported by using
gray-level co-occurrence matrix (GLCM)-based texture
features with a posterior probability-based classifier for
the Mammographic Image Analysis Society (MIAS)
database. Yang et al. [10] developed a two-stage CAD
system for the detection and classification of breast
masses. In the first stage, the statistical gray-level differ-
ence matrix and fractal dimension-based five texture fea-
tures were used for the detection and extraction of
breast masses using a probabilistic neural network
(PNN). In the second stage, four shape features were
further coupled with the previously used five texture fea-
tures for classification using a PNN and achieved an ac-
curacy of 84.1% for the mammograms taken from

Taichung Veteran General Hospital. Kegelmeyer et al.
[11] proposed a CAD system for the detection of specu-
lated mass lesions by using four Laws’ texture features
with a new feature responsive to stellate patterns. A sen-
sitivity of 97.0% with 0.28 FP per image has been re-
ported. Nandi et al. [12] employed a set of 22 features
related to shape, texture, and edge sharpness for the
classification of breast mass lesions using genetic pro-
gramming classification techniques that implicitly pos-
sess feature selection capability. A shape-based feature
called fractal concavity was the most discriminative fea-
ture among all, and the proposed system showed classifi-
cation accuracies above 99.5% and 98.0% for the training
and testing sets, respectively. Delogu et al. [13] developed
a CAD system for the segmentation and classification of
breast masses in mammograms. To extract the exact mass
lesions, the first region of interest (ROI) containing the
mass lesions was located by expert radiologists, and then
the wavelet transform-based segmentation technique was
used to separate the mass lesions from the normal tissues
in the ROI. Repeated experiments were performed with
various combinations of 16 shape-, size-, and intensity-
based features using a multi-layered perceptron neural
network classifier. The best classification results were ob-
tained using the 12 most powerful features out of a total
of 16 computed features. Domínguez and Nandi [14] con-
ducted various experiments to explore the usefulness of a
set of six mass margin characterization features extracted
from simplified versions of contours. The performance of
each of these features and their various combinations were
evaluated using three different classifiers on a set of mam-
mographic images taken from mini-MIAS and Digital
Database for Screening Mammography (DDSM) datasets.
It was found that out of all the possible sets of features,
spiculation features performed the best, and most of the
systems formed by using different combinations of fea-
tures, datasets, and classifiers were more efficient in iden-
tifying benign masses than malignant masses. Ganesan
et al. [15] presented a classification pipeline for studying
the textural changes that occurred in mammogram images
of cancerous breasts and further improved the classifica-
tion accuracy. Features based on higher-order spectra,
local binary patterns, Law’s texture energy, and discrete
wavelet transform were extracted from the manually seg-
mented mass lesions. Out of the six classifiers used, the
decision tree (DT) classifier showed promising results.
Sharma and Khanna [16] showed that the Zernike mo-
ment of order 20 performed better than the other texture
descriptors, spatial grey-level co-occurrence matrices
(SGLCM), and discrete cosine transform, with a support
vector machine (SVM) classifier. The proposed system
attained 99.0% sensitivity and 99.0% specificity with the
image retrieval in medical applications dataset and 97.0%
sensitivity and 96.0% specificity with the DDSM dataset.
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Liu and Tang [17] investigated the classification per-
formance of a CAD system by employing several fea-
ture selection algorithms with an SVM classifier. A
new feature selection algorithm called SVM-based re-
cursive feature elimination with normalized mutual
information feature selection has been proposed for
the selection of an optimal set of features out of a
total of 31 features (12-geometry and 19-texture). Ex-
periments were carried out with 826 ROIs (408 m and
418 b) taken from the DDSM dataset. The best area
under curve (AUC) values of 0.9439 and 0.9615 were
achieved with the proposed feature selection tech-
nique and SVM classifier with ten-fold cross-
validation and leave-one-out scheme, respectively.
Kashyap et al. [18] proposed a CAD system for the
diagnosis of breast masses in mammograms and their
shape analysis. The fast fuzzy C-means clustering al-
gorithm was employed for the extraction of mass le-
sions from pre-processed mammograms. SVM was
used to classify segmented ROIs as mass or non-mass
using the texture features. The proposed system was
evaluated on two datasets, mini-MIAS and DDSM,
and achieved the highest sensitivity, specificity, accur-
acy, and AUC values of 91.7%, 96.2%, 95.4%, 96.2%,
and 94.6%, 92.7%, 92.0%, 95.3% respectively. Finally,
shape analysis was performed by employing radon
transform-based features. Lbachir et al. [19] proposed
a complete CAD system for breast masses. A histo-
gram region analysis-based k-means algorithm has
been proposed for the segmentation of breast mass
lesions from enhanced mammogram images. Texture
and shape features were then used for false-positive
reduction with the bagged trees classifier. Finally,
SVM was employed for the classification of breast
masses. The proposed system achieved 93.1% and
90.8% detection accuracies and 94.2% and 90.4% clas-
sification accuracies for the MIAS and the curated
breast imaging subset of DDSM datasets, respectively.
Hosni et al. [20] used a systematic map to examine
the state-of-the-art ensemble classification methods
when applied to breast cancer in terms of nine fac-
tors: publication venues, medical tasks addressed, em-
pirical and research types used, types of ensembles
proposed, single techniques used to construct the en-
sembles, validation framework used to evaluate the
proposed ensembles, and the tools used. The goal of
this study is to conduct a systematic mapping investi-
gation of single approaches. Al-Antari et al. [21] used
a You Only Look Once detector for the detection of
breast lesions and deep learning convolutional models
for retrieving deep features. Classification accuracies
of 94.5%, 95.8%, and 97.5%, respectively, for the
DDSM dataset and 88.7%, 92.5%, and 95.3%, respect-
ively, for the INbreast dataset were achieved by

employing three modified deep learning classifiers,
namely regular feedforward convolutional neural net-
work, ResNet-50, and InceptionResNet-V2.
Most of the aforementioned studies dealt with either

mass classification or feature selection techniques. Tex-
tures and geometric features are being used by most re-
searchers for the characterization of breast mass lesions
so they can be classified into benign and malignant cat-
egories. It is a well-established fact that usually, all ex-
tracted features do not contribute equally to the
classification of masses, and some features perform bet-
ter in combination with other features. Therefore, it is
interesting to identify the significant contributing fea-
tures from the pool of total extracted features. Feature
selection algorithms are generally used for the selection
of an optimal and relevant subset of extracted features;
however, these algorithms cannot be used for perform-
ing a comparative analysis of the discriminative capabil-
ities of individual features. There are very few studies in
the literature that show a comparative analysis of dis-
criminative capabilities of an individual or a group of
features. As a primary contribution, this work is
intended to analyze the discriminative capabilities of
various texture and geometric (shape and margin) fea-
tures in CAD systems by incorporating various combina-
tions of texture and geometric features and pattern
classification methods. As the key finding, this research
investigation revealed the nine most discriminative fea-
tures out of a pool of 125 texture and geometric
features.
The remainder of this paper proceeds as follows. The

methods are presented in Section 2. The results are re-
ported and discussed in Section 3, and Section 4 pre-
sents the conclusions.

Methods
In this study, a CAD system was proposed for carrying
out a comparative analysis of the proficiencies of various
texture and geometric features for the classification of
breast masses into benign and malignant categories. The
schematic diagram of the proposed CAD system is
shown in Fig. 1, which consists of five main stages: ar-
rangement of the mammographic dataset, exact mass le-
sion extraction, feature extraction, feature selection, and
classification. A brief description of each step is provided
in the following subsections.

Mammographic dataset
Fully field digital mammographic (FFDM) images
taken from the INbreast dataset were included in this
study for carrying out the experiments. All images in
the INbreast dataset have a Digital Imaging and Com-
munications in Medicine format and have been ac-
quired at two different resolutions, 3328 × 4084 and
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2500 × 3328, using MammoNovation Siemens FFDM
equipment at Centro de Mama - Hospital de S. João
(CHSJ), breast center Porto. Boundary points in the
form of pixel coordinates inscribing various types of
abnormalities in mammographic images of breasts are
provided with the dataset [22]. A detailed description
of the images included in this study for carrying out
the experiments is presented in Table 1.
The samples of mammogram images containing be-

nign and malignant mass lesions are shown for reference
in Fig. 2. Figure 2(a) contained a single benign mass le-
sion, Fig. 2(b) contained a single malignant mass lesion,
Fig. 2(c) contained two benign masses, and Fig. 2(d) con-
tained two malignant masses. Each mass lesion and its
corresponding ROI region have been highlighted in the
sample mammogram images with labels.

Methodology
Exact mass lesion extraction
One of the stringent requirements for the extraction of
geometric features is the delineation of the exact shapes
of breast masses. Delineation of the exact shape of a
mass lesion is a complex task and remains a challenging
issue. Since the main objective of this study is to investi-
gate the effectiveness of various textures and geometric
features in the classification of breast masses, no em-
phasis is placed on segmentation techniques in this
study, and pixel-level ground truth annotations provided
with the INbreast dataset have been used for the

extraction of the exact shape of the mass lesions. Exact
mass lesions were segmented out from the mammogram
images by converting the lesion annotations into bound-
ing boxes. Figure 3 illustrates the steps used in the ex-
traction of mass lesions with intermediate results.

Feature extraction
After extraction of the exact shapes of breast masses
from mammogram images, the next crucial step is the
characterization of breast masses. In many CAD systems
described in the literature, various combinations of
shape, boundary, and texture features have been used
for the characterization of breast masses. In this study,
textures and geometric (shape and/or margin) features
were employed for the characterization of breast masses.
The following subsections describe the various textures
and geometric features employed in this study for the
classification of malignant and benign breast masses.

Texture features Texture analysis is a source of import-
ant discriminatory characteristics or features related to
the visual patterns of an image. To date, numerous tex-
ture feature extraction techniques have been proposed
in the literature. These techniques can be broadly
grouped into four different approaches: structural, statis-
tical, model-based, and transform methods. Of these,
statistical-based feature extraction techniques are the
most widely used techniques in the literature. However,
it is worth mentioning that these days, it has become

Fig. 1 The schematic diagram of the proposed CAD system

Table 1 Detailed description of mammographic image dataset [22]

Total number of
images included

Images containing
a single mass

Images containing
double masses

Images containing
three masses

Total number of
mass lesions

Number of
benign masses

Number of
malignant
masses

106 98 7 1 115 52 63
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difficult to apply feature extraction techniques to any of
these approaches because of their increased complexity.
Most feature extraction techniques can be categorized
into several groups [23]. Table 2 presents the various
texture models and the corresponding texture features
extracted in this study. The following subsections de-
scribe the various texture feature extraction techniques
employed in this study.
SGLCM: It has been proven in the literature that

second-order statistics perform better than the human
visual system in the discrimination of certain classes of
textures. Haralick et al. [24] in 1973 proposed a frame-
work for the computation of second-order statistics of
aerial images. In second-order statistical texture analysis,
texture information is extracted from the grey-level im-
ages by calculating the probabilities of occurrence of
pairs of gray levels at random distances and four differ-
ent orientations over an entire image. The extracted tex-
ture information is represented in the form of a matrix
called GLCM or grey-tone spatial dependence matrix.
Since each pixel of an image has eight nearest neighbors
except for pixels at the periphery, four GLCMs will be
required to represent the second-order statistical texture

information in each of the four directions, and these
four matrices are denoted as (PH = 00) for the horizontal
direction, (PV = 900) for the vertical direction, (PRD =
450) for the right diagonal, and (PLD = 1350) for the left
diagonal [25, 26]. In this study, 14 SGLCM features pre-
sented in Table 2 were extracted and used for the classi-
fication of breast masses in mammogram images.
GLDS: GLDS plays an important role in the texture ana-

lysis of images by analyzing the local image properties cal-
culated at each point of the given image. In this technique,
the image texture is analyzed by considering the class of
properties based on absolute differences between pairs of
gray levels. To depict the GLDS mathematically, I(x, y) is
used to represent the image intensity function, and δ =
(Δx, Δy) is used to represent the small displacement [27].
Therefore, for a given small-displacement δ = (Δx, Δy), the
difference in gray levels is represented as:

Iδðx; yÞ ¼ jIðx; yÞ−Iðxþ Δx; y þ ΔyÞj ð1Þ

Let pδ denote the probability density of Iδ(x, y). There-
fore, if a given image contains m-different gray levels,
then pδ can be represented by an m-dimensional vector

Fig. 2 Sample of mammogram images containing benign and malignant masses. (a) Single benign mass; (b) Single malignant mass; (c) Two
benign masses; (d) Two malignant masses [22]

Fig. 3 Snapshots for describing the steps used in the extraction of mass lesions
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whose ith element represents the probability that Iδ(x, y)
will have a value of i. The values of pδ can be easily com-
puted by counting the number of occurrences of each
value of Iδ(x, y) for small integer values of displacements
Δx and Δy. The concentration of values in the m-
dimensional vector pδ varies according to the variation
in the values of δ compared to the texture element size.
The measures used in this study for the classification of
malignant and benign masses include the mean, con-
trast, entropy, and homogeneity.
FPS: Compared to spatial methods, FPS is preferably

used for describing the directionality of periodic texture
patterns in images because spatial methods cannot dis-
tinguish their global texture patterns because of their
local nature. FPS can be used for the extraction of tex-
ture primitives by computing the sample power
spectrum [28]. The sample power spectrum is denoted
by ϕ, and is computed as follows:

ϕ u; vð Þ ¼ F u; vð ÞF� u; vð Þ ¼ F u; vð Þj j2 ð2Þ

Here, F is the Fourier transform of the given image,
and F* stands for the complex conjugate of F. FPS fea-
tures used in this study include the radial sum and angu-
lar sum.
FOS features: In the FOS texture analysis, texture

measures were computed from the histogram of an
image. The histogram of an image is a compendious
summary of statistical information stored in an image
[23]. The simplicity of this technique lies in the fact that
this technique mainly uses the frequency of a particular
gray-level intensity for the computation of texture mea-
sures and does not consider the correlation between
pixels. For any image I having N distinct gray levels and
a total of M pixels, the histogram represents the number
of pixels in the whole image with gray-level intensity i
for each intensity level, and the probability density of oc-
currence of that intensity level can be calculated as:

P ið Þ ¼ N ið Þ
M

ð3Þ

where N(i) is the total number of pixels with gray-level
intensity ‘i’. Histogram shapes can be used to draw a
number of inferences related to the characteristics of a
given image. The parameters used in this study include
the mean, variance, skewness, and kurtosis.
SFM: It has been found that most spatial gray-level

dependence methods use a single fixed inter-pixel dis-
tance for the extraction of second-order statistical tex-
ture features. Owing to this constraint, these methods
cannot discriminate all the visual texture pairs within
an image. Therefore, to discriminate all such visual
pixel pairs, a set of inter-pixel distances instead of a
single fixed distance has to be used. SFM is one such
technique, in which the statistical properties are com-
puted for various inter-pixel distances within an image.
In the SFM technique, the matrix can easily be ex-
panded and the size of the matrix does not depend on
the number of gray levels but varies according to the
inter-pixel distance. In addition, some physical proper-
ties can be directly evaluated from the SFM. In this
study, SFM was used for the extraction of four texture
properties: periodicity, contrast, coarseness, and rough-
ness [29].
LTEM: LTEM is a technique used to measure the

amount of texture variation within a window of fixed
size. In this technique, 1-dimensional local convolutional
masks were used for the extraction of the texture fea-
tures. This technique uses three simple vectors of length
3 to drive the law’s texture energy measures [23, 28, 30].
Furthermore, we obtained five vectors of length 5 after
the convolution of three vectors with themselves or with
each other. Law masks of 5 × 5 dimensions were then
obtained by multiplying these vectors with themselves or
with each other. One of these vectors should be a col-
umn vector of length 5, and the other should be a row
vector of the same length. Finally, texture features in the
form of statistical values are calculated from the set of
energy images obtained from the convolution of masks
with the given image. In this study, we used a total of 14
masks, as presented in Fig. 4, for the extraction of law’s
texture measures.

Table 2 Features extracted using different texture models

Model Extracted features

SGLCM [F1-F14] ‘ASM’, ‘Contrast’, ‘Correlation’, ‘Sum_Squares’, ‘Inverse_Diff_Moment’,
‘Sum_Average’, ‘Sum_Variance’, ‘Sum_Entropy’, ‘Entropy’, ‘Diff_Variance’,
‘Diff_Entropy’, ‘Info_Measure1’, ‘Info_Measure2’, ‘Max_Corr_Coff’

Gray level difference statistics (GLDS) [F15-F19] ‘Homogeneity’, ‘Contrast’, ‘Mean’, ‘Energy’, ‘Entropy’

First order statistical (FOS) [F20-F23] ‘Mean’, ‘Variance’, ‘Skewness’, ‘Kurtosis’

Statistical feature matrix (SFM) [F24-F27] ‘Mean’, ‘Variance’, ‘Skewness’, ‘Kurtosis’

Law’s texture energy measures (LTEM) [F28-F41] ‘EE’, ‘SS’, ‘WW’, ‘RR’, ‘EL’, ‘SL’, ‘WL’, ‘RL’, ‘SE’, ‘WE’, ‘RE’, ‘WS’, ‘RS’, ‘RW’

Fractal [F42-F43] ‘H1’, ‘H2’

Fourier power spectrum (FPS) [F44-F45] ‘Sr’, ‘Stheta’
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Fractal texture analysis: Mandelbrot [31] in 1977 pro-
posed the concept of fractals for describing complex
structures that cannot be described using traditional Eu-
clidean geometry. Natural objects generally have com-
plex and irregular structures that cannot be adequately
represented by shapes such as spheres, cylinders, and
cubes. Fractal analysis is a compendium and precise
method for representing complex patterns that recur at
various scales and resolutions. Such complex objects
usually possess the property of self-similarity, and this is
one of the central concepts of fractal geometry. It has
been found in the literature that features derived from
fractal analysis play an important role in distinguishing
between malignant and benign breast masses as malig-
nant breast masses possess more complex textures than
benign masses [7, 32]. The two most commonly used
techniques for calculating the fractal dimension are the
box-counting method and the fractional Brownian mo-
tion model [33]. In this study, Hurst coefficients H1 and
H2, calculated using the fractional Brownian motion
model at two different resolutions, were used as texture
features for the classification of breast masses [28].

Geometry features The shape and margin of breast
masses in mammograms are important indicators of ma-
lignancy, and the same can be used for the diagnosis of
breast masses using CAD-based systems. Geometry-
based approaches are widely used for extracting shape
and margin features. It is a well-established fact that
both malignant and benign masses originate from a sin-
gle spot and take different shapes and margins after
growing circumferentially. Generally, benign masses at-
tain round and oval shapes with well-circumscribed and
smooth boundaries, while malignant masses attain ir-
regular shapes with rough, ill-defined, and speculated
boundaries [34].
One of the stringent requirements of geometry-based

approaches is that they require the exact delineation of
mass shapes. However, delineating the exact mass from
mammogram images is a complex task and has always
remained a challenging issue. Despite these problems,
shape and margin features still have great significance in

the classification of breast masses. The various shape
and margin features used in this study are listed in
Table 3.
In addition to shape features, Zernike moments and

Fourier descriptors were also included in this study. Zer-
nike moments can be described as a set of descriptors
computed by mapping an image over a set of complex
Zernike polynomials [16]. Zernike moments have been
widely used in the literature to characterize the shape
features of breast masses. The widespread popularity of
Zernike moments is due to their orthogonality and the
fact that these moments are invariant to an arbitrary ro-
tation of the describing shape. Therefore, these descrip-
tors can be used to describe the shape characteristics,
regardless of the rotation of the mass with minimum in-
formation redundancy. Zernike moments of order n with
repetition m for any continuous image function f(x, y)
are computed as follows:

Znm ¼ nþ 1
π

X
x

X
y
f ðx; yÞ½Vnmðx; yÞ�� ð4Þ

where Vnm(x, y) is the set of orthogonal polynomials
defined on the unit disk ( x2 + y2 ≤ 1) using radial
polynomials and ‘∗’ denotes the complex conjugate.
Higher-order Zernike moments suffer from the prob-
lem of high computational complexity and higher sen-
sitivity to noise, but these can act as better shape
descriptors compared to low-order Zernike moments
with careful selection.
Although Zernike moments are robust in performance,

they also suffer from several limitations. The first prob-
lem with Zernike moments is that the pixel coordinates
must be mapped to the range of the unit circle. The sec-
ond problem with Zernike moments is that the radial
and circular features computed by Zernike moments lie
in different domains and are not consistent with each
other. The third problem with Zernike moments is re-
lated to the calculation of the circular spectral features.
These features are not calculated evenly for each order
because important shape descriptors can be lost.
To overcome these limitations, generic fourier descrip-

tors (GFD), proposed by Zhang and Lu [35], were in-
cluded in this study. The GFDs are extracted by
applying a 2-D Fourier transform to a polar-raster sam-
pled shape.

Fig. 4 Masks employed in the extraction of law’s texture energy
measures [30]

Table 3 Various shape and margin features

Features models Feature index

Shape features F46-F58 (area, major axis length, minor axis length,
eccentricity, orientation, convex area, filled area,
Euler number, equiv. diameter, solidity, extent,
perimeter, perimeter cirratio)

Zernike moments F59-F73

Fourier descriptors F74-F125
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PF2 ρ;ϕð Þ ¼
X

r

X
i
f r; θið Þ exp j2π

r
R
ρþ 2πi

T
ϕ

� �� �

ð5Þ
where 0 ≤ r ≤ R and θi = i(2π/T)(0 ≤ i < T); 0 ≤ ρ < R, 0 ≤
ϕ < T. R is the radial frequency resolution, and T is the
angular frequency resolution. The normalized coeffi-
cients are the GFDs. The city block distance between
two GFDs corresponding to different shapes was used to
determine the similarity between the two shapes [36].
GFDs offer several advantages over Zernike moments.
The first advantage is that the computed features are
pure spectral features and are simpler to compute. Sec-
ond, owing to their capability of multi-resolution ana-
lysis in both radial and circular directions of the shape,
GFDs exhibit better retrieval performance.

Feature selection
A total of 125 texture and geometric features were com-
puted in this study. However, many real-time pattern
recognition applications with large feature sets may suf-
fer from performance degradation owing to the presence
of redundant and irrelevant features. Feature selection is
a data pre-processing step employed for the selection of
an optimal and relevant set of features. There are mainly
two types of feature selection techniques: filter-based
techniques and wrapper-based techniques [37]. Filter-
based techniques do not require any classifier and they
perform feature selection independently; however,
wrapper-based feature selection techniques work in con-
junction with classifiers and select only those sets of fea-
tures that optimize the proposed objective function.
The main objective of this study was to determine the

most discriminative features from the pool of total fea-
tures, therefore, a filter-based feature selection technique
was employed for the selection of the top 20 most dis-
criminative features out of a pool of 125 features. To se-
lect the best feature selection technique, an experiment
was carried out by employing four state-of-the-art filter-
based feature selection techniques, namely Relief-F [38],
Pearson correlation coefficient [39], neighborhood com-
ponent analysis [40], and term variance [41]. After ana-
lysis of the obtained results, the Relief-F feature
selection technique was found to be the best feature se-
lection technique for selecting the top 20 most discrim-
inative features in this study.

Relief-F The original relief algorithm proposed by Kira
and Rendel [42] was inspired by instance-based learning.
Relief assigns each feature a feature score, which can
subsequently be used to rank and select the highest-
scoring features for feature selection. These scores can
also be used as feature weights to aid downstream mod-
eling. The discovery of feature value discrepancies

between nearest-neighbor instance pairs was used to
score relief features. The feature score is lowered if a
feature value difference is discovered in a surrounding
instance pair within the same class. The feature score in-
creases if a feature value difference is found in a sur-
rounding instance pair with different class values. The
original Relief algorithm is rarely used these days and
has been replaced by various successors. Relief-F is the
best and the most widely used variant of the relief algo-
rithms. The Relief-F algorithm was proposed by Kono-
nenko [43] and ‘F’ in the Relief-F algorithm suggests that
it is the sixth variant [A to F] of the Relief algorithm.
There are four key differences between Relief-F and

Relief. Firstly, Relief-F uses a user option k that defines
the use of k nearest hits and k nearest misses in the
score update for each target instance (rather than a sin-
gle hit or miss). This refinement improved the accuracy
of the weight estimates, especially for noisy problems.
Relief-A was the name given to this method modifica-
tion when it was first proposed. Second, three different
solutions for dealing with partial data were offered (i.e.,
missing data values) under the variant names Relief (B-
D). Third, two different solutions for dealing with multi-
class endpoints were offered under the variant names
Relief-E and Relief-F. Finally, it is assumed that the qual-
ity of the weight estimates would improve when the par-
ameter m approaches the total number of occurrences n.
To add clarity, every instance in the dataset has the op-
portunity to be the target instance once. The details of
the Relief-F feature selection algorithm can be found in
publications [44–46].

Classification
In this study, the k-NN classifier was employed for the
classification of breast mass lesions into malignant and
benign categories. The work of k-NN is based on the
idea that cases in a dataset are often found in close prox-
imity to others with similar characteristics. If each in-
stance has a classification label, the value of an
unclassified instance’s label can be determined by look-
ing at the class of its closest neighbors. The k-NN finds
the k closest instances to the query instance and classi-
fies it by finding the most common class label. In gen-
eral, instances can be considered as points in an n-
dimensional instance space, with each n-dimension cor-
responding to one of the n-features needed to
characterize an instance. The relative distance between
instances is more important than the absolute position
of the instances within this region. A distance metric
was used to calculate relative distance. In theory, the dis-
tance metric should reduce the distance between two
similarly categorized instances while increasing the dis-
tance between instances of different classes [47].
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Therefore, the performance of k-NN depends on the se-
lection of only two parameters: the number of k nearest
neighbors and the distance metric. The value of k should
be chosen in such a way that it can result in the highest
classification accuracy. Furthermore, distance metrics
were used to calculate the nearest distances. Various dis-
tance metrics have been proposed in the literature, and
the selection of an appropriate distance metric depends
on the type and nature of the dataset [48].

Results and discussion
A comparative analysis was carried out by comparing
the performance measures computed for all individual
feature models and the stated combinations. This was
done to determine which individual features and their
various combinations provide better classification per-
formance. The k-NN classifier was used for the evalu-
ation of classification performance by incorporating ten-
fold cross-validation, and the performance was observed
in the form of mean accuracy, sensitivity, and specificity
obtained after ten repetitions. All experiments were per-
formed using MATLAB R2018a software running on a
Windows 10 operating system with an Intel(R) Core
(TM) i5-8250U CPU@ 1.60 GHz 1.80 GHz with 8 Gb of
RAM.
Initially, all 125 features were employed to compute

the classification performance of six different state-of-
the-art classifiers, namely k-NN [49], SVM [50], DT
[51], Naive Bayes (NB) [52], random forest (RF) [53],
and ensemble tree (ET) [54] with a 10-fold cross-
validation strategy. The experiment was repeated ten
times, and the final results were obtained by averaging
the results of the ten experiments. The results are pre-
sented in Table 4.
A detailed analysis of the results is presented in Table 4,

it was found that the best classification results (accuracy =
80.0%, sensitivity = 78.5%, and specificity = 82.0%) were
obtained with the SVM classifier while using all 125 fea-
tures. We would like to mention here that although SVM
outperformed all other classifiers in the initial experiment,
during the subsequent experimentation, it was found that
the k-NN classifier had a better performance than the
SVM and all other classifiers for various combinations of

textures and geometric features, including a reduced set of
nine most discriminating features proposed in this study.
Based on these results, only the k-NN classifier is pre-
sented in the subsequent sections of this study.
Furthermore, in order to investigate the discriminating

capabilities of the individual as well as various combina-
tions of textures and geometric features, numerous ex-
periments were carried out in this study. In the first
experiment, features extracted by seven different texture
models were employed individually to assess their dis-
criminative capabilities in the classification of breast
masses by using five different variants of the k-NN clas-
sifier. Five variants of k-NN include fine k-NN, medium
k-NN, cosine k-NN, cubic k-NN, and weighted k-NN.
All these variants differ in two parameters, namely the
distance metric and distance weight. The second experi-
ment was carried out using geometric features, Zernike
moments, and Fourier descriptors, individually. In the
third experiment, three different sets of features, includ-
ing all textures, all geometric features, and a combin-
ation of textures and geometric features, were used for
classification by employing five different variants of k-
NN. The classification results obtained by employing the
seven individual texture models are listed in Table 5.
Inspection of the results presented in Table 5 showed

that the SFM and fractal features outperform other fea-
ture models in terms of all performance metrics. Fur-
thermore, to assess the discriminative capabilities of the
geometric features, the classification results using indi-
vidual geometric feature models are presented in
Table 6.
After a detailed analysis of the results presented in

Table 6, it was found that Fourier descriptors perform
very well in the classification of breast masses in terms
of all performance measures (accuracy, sensitivity, and
specificity). Shape and Zernike moments also contribute
considerably to sensitivity, along with the Fourier
descriptors.
Finally, three sets of features consisting of all textures,

all geometric features, and a combined set of all textures
and geometric features, respectively, were employed for
the classification of breast masses using various versions
of k-NN. Table 7 presents the classification results in
terms of accuracy, sensitivity, and specificity.
The analysis of the above results showed that the geo-

metric features perform better than the features related
to texture, and the overall accuracy improves when using
a combination of texture and geometric features. Tex-
tures also play a significant role in the identification of
positive cases, and hence, contribute considerably to im-
proving the classification performance.
As a primary contribution, this work is intended to

identify the most discriminative features from the pool
of total features. Four state-of-the-art filter-based feature

Table 4 Classification results were obtained for six different
state-of-the-art classifiers using a set of all 125 features

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

k-NN [49] 76.0 73.0 80.0

SVM [50] 80.0 78.5 82.0

DT [51] 68.7 70.8 66.0

NB [52] 72.2 64.6 82.0

RF [53] 73.1 80.0 64.0

ET [54] 72.2 73.8 70.0
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selection techniques, namely Relief-F, pearson correl-
ation coefficient, neighborhood component analysis, and
term variance, were employed to rank the features ac-
cording to their discriminative capabilities. The top 20
most discriminative features were selected for each of
the four feature selection techniques. Table 8 presents
the rank-wise lists of the top 20 most discriminative fea-
tures for each of the four feature selection techniques
employed in this experiment.
Furthermore, to compare the performance of the fea-

ture selection algorithms, the top 20 features selected by
each of the four feature selection algorithms were passed
to the cosine variant of the k-NN classifier with the
number of neighbors k = 5 and squared inverse distance
weight individually. The classification results obtained
for each feature subset are listed in Table 9.
After an exhaustive analysis of the obtained results,

it was observed that the best classification results (ac-
curacy = 85.2%, sensitivity = 88.0%, and specificity =
82.0%) were obtained by using the top 20 features se-
lected by the Relief-F feature selection algorithm. Fur-
ther investigation of the top 20 most discriminative
features selected by the Relief-F feature selection algo-
rithm includes both textures and geometric features.
The selected texture features belong to various tex-
ture feature models, including the SGLCM model,

FOS, SFM, and fractal texture analysis model. The
maximum number of features (five) belong to the
SGLCM feature model, and the feature names are
sum squares, sum average, sum variance, sum en-
tropy, and entropy. The features belonging to the
FOS model are mean, variance, and skewness. The
SFM features include periodicity and contrast, and
the only feature belonging to the fractal texture ana-
lysis model is H2. The selected geometric features in-
clude features belonging to all three geometric feature
models, including shape, Zernike moments, and Fou-
rier descriptors. Shape features include the Euler
number, solidity, and extent. The features belonging
to the Zernike moments are ZM3–1 and ZM31. The
maximum number (four) of the selected geometric
features belongs to the Fourier descriptor model, and
the feature names are FD26, FD14, FD13, and FD9.
For further investigation, feature selection was applied

to a set of textures and geometric features individually,
by employing the Relief-F algorithm. The sets of the top
20 most discriminative texture and geometric features
selected by employing the Relief-F feature selection algo-
rithm are presented in Table 10.
Further experimentation was conducted to investigate

the classification results obtained by employing the top
20 geometric and texture features individually using six

Table 8 Rank-wise lists of the top 20 most discriminative features selected by four different feature selection techniques

Rank Relief-F Pearson correlation coefficient Neighbourhood component analysis Term variance

Index Feature name Index Feature name Index Feature name Index Feature name

1 F99 FD26 F86 FD13 F1 ASM F45 Stheta

2 F53 Euler number F99 FD26 F2 Contrast F44 Sr

3 F55 Solidity F87 FD14 F3 Correlation F51 Convex area

4 F56 Extent F82 FD9 F4 Sum squares F52 Filled area

5 F4 Sum squares F83 FD10 F5 Inverse diff moment F46 Area

6 F20 Mean F85 FD12 F6 Sum average F57 Perimeter

7 F87 FD14 F53 Euler number F7 Sum variance F48 Minor axis length

8 F6 Sum average F92 FD19 F8 Sum entropy F47 Major axis length

9 F7 Sum variance F84 FD11 F9 Entropy F54 Equiv diameter

10 F86 FD13 F95 FD22 F10 Diff variance F21 Variance

11 F66 ZM3–1 F90 FD17 F11 Diff entropy F53 Euler number

12 F67 ZM31 F33 SL F12 Info measure1 F50 Orientation

13 F26 Periodicity F74 FD1 F13 Info measure2 F7 Sum variance

14 F82 FD9 F97 FD24 F14 Max Corr. Coff F20 Mean

15 F43 H2 F98 FD25 F15 Homogeneity F24 Coarseness

16 F21 Variance F124 FD51 F16 Contrast F4 Sum squares

17 F22 Skewness F79 FD6 F17 Mean F16 Contrast

18 F25 Contrast F43 H2 F18 Energy F25 Contrast

19 F8 Sum entropy F81 FD8 F19 Entropy F6 Sum average

20 F9 Entropy F80 FD7 F20 Mean F23 Kurtosis
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state-of-the-art classifiers. The results are presented in
Table 11.
From a detailed analysis of the classification results

presented in Table 11, it can be inferred that the best re-
sults are obtained when the combinations of textures
and geometric features are used as compared to the indi-
vidual texture and geometric features. Moreover, it can
also be observed that the cosine version of the k-NN
classifier employed in this experiment with a number of
neighbors k = 5 and squared inverse distance weight out-
performed all other classifiers using a reduced set of
features.
Further experimentation was carried out to investigate

all 20 features selected by the Relief-F feature selection
method. Table 12 presents the classification perfor-
mances of the top 20 features when used individually for
classification with the cosine variant of the k-NN

classifier with the number of neighbors k = 5 and
squared inverse distance weight under the same
conditions.
From Table 12, it can be easily observed that the

FD26 feature extracted using the Fourier descriptor
model is the most discriminative feature with a classi-
fication accuracy of 67.0%. In addition, it can be ob-
served that as we move downwards, the classification
accuracy for individual features continues to decrease,
with a few exceptions. Since CAD systems with 67.0%
accuracy cannot be used for practical applications,
there is a need to include more features to achieve
better classification results. Figure 5 presents the
curves obtained when the classification performance
of different feature subsets of the top 20 features se-
lected by the Relief-F algorithm are plotted against
the number of features.

Table 9 Classification results obtained using the top 20 features selected by four different feature selection algorithms

Feature selection Accuracy (%) Sensitivity (%) Specificity (%)

Relief-F [38] 85.2 88.0 82.0

Pearson correlation coefficient [39] 80.9 80.0 82.0

Neighbourhood component analysis [40] 75.7 75.0 76.0

Term variance [41] 60.0 66.0 52.0

Table 10 Rank-wise lists of the top 20 most discriminative textures and the top 20 most discriminative geometric features selected
by the Relief-F feature selection algorithm

Rank Rank wise top 20 texture features Rank wise top 20 geometry features

Index Feature name Feature model Index Feature name Feature model

1 F42 H1 FRACTAL F99 FD26 Fourier descriptor

2 F43 H2 FRACTAL F103 FD30 Fourier descriptor

3 F33 SL LTEM F82 FD9 Fourier descriptor

4 F27 Roughness SFM F84 FD11 Fourier descriptor

5 F7 Sum variance SGLCM F66 ZM3–1 Zernike moments

6 F26 Periodicity SFM F67 ZM31 Zernike moments

7 F25 Contrast SFM F53 Euler number Shape descriptor

8 F4 Sum squares SGLCM F87 FD14 Fourier descriptor

9 F20 Mean FOS F86 FD13 Fourier descriptor

10 F6 Sum average SGLCM F97 FD24 Fourier descriptor

11 F24 Coarseness SFM F70 ZM4–2 Zernike moments

12 F32 EL LTEM F72 ZM42 Zernike moments

13 F16 Contrast GLDS F74 FD1 Fourier descriptor

14 F15 Homogeneity GLDS F92 FD19 Fourier descriptor

15 F19 Entropy GLDS F55 Solidity Shape descriptor

16 F17 Mean GLDS F56 Extent Shape descriptor

17 F37 WE LTEM F100 FD27 Fourier descriptor

18 F22 Skewness FOS F119 FD46 Fourier descriptor

19 F23 Kurtosis FOS F115 FD42 Fourier descriptor

20 F9 Entropy SGLCM F104 FD31 Fourier descriptor
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The analysis in Fig. 5 shows that the classification ac-
curacy continues to increase with the addition of a
greater number of features with a few exceptions. A
similar trend was observed for the sensitivity and specifi-
city. The presence of exceptions demonstrates that some
of the features may or may not perform well when used
in combination with other features, and they may de-
grade the classifier’s performance. These exceptions can
be eliminated by selecting a highly relevant and optimal
set of features.
Therefore, further experiments were performed to

solve this problem by investigating the classification per-
formances of manually selected subsets of the top 20

Table 11 Classification results obtained by employing the top 20 texture, top 20 geometric, and top 20 combined texture and
geometric features with six different state-of-the-art classifiers

Classifier Feature set Accuracy (%) Sensitivity (%) Specificity (%)

k-NN Texture features (T) 73.9 83.1 62.0

Geometry features (G) 77.4 76.0 78.0

Combined (T&G) 85.2 88.0 82.0

SVM Texture features (T) 71.3 73.8 68.0

Geometry features (G) 72.2 73.8 70.0

Combined (T&G) 81.7 84.6 78.0

DT Texture features (T) 68.9 69.2 68.0

Geometry features (G) 71.2 67.6 76.0

Combined (T&G) 71.5 73.8 68.0

NB Texture features (T) 67.9 64.6 72.0

Geometry features (G) 70.4 72.3 68.0

Combined (T&G) 77.4 75.4 80.0

RF Texture features (T) 73.9 84.6 60.0

Geometry features (G) 74.1 75.4 72.0

Combined (T&G) 80.6 86.1 74.0

ET Texture features (T) 74.4 83.0 64.0

Geometry features (G) 76.3 81.5 70.0

Combined (T&G) 81.1 83.0 78.0

Table 12 Classification performances of the top 20 features
selected by Relief-F when employed individually

Feature name Accuracy (%) Sensitivity (%) Specificity (%)

FD26 67.0 71.0 62.0

Euler number 58.0 62.0 54.0

Solidity 56.0 62.0 48.0

Extent 56.0 62.0 48.0

Sum squares 50.0 58.0 38.0

Mean 47.0 52.0 38.0

FD14 62.0 62.0 62.0

Sum average 52.0 58.0 44.0

Sum variance 60.0 66.0 52.0

FD13 62.0 69.0 52.0

ZM3–1 44.0 52.0 34.0

ZM31 44.0 52.0 34.0

Periodicity 50.0 57.0 42.0

FD9 61.0 66.0 56.0

H2 65.0 69.0 60.0

Variance (FOS) 47.0 54.0 38.0

Skewness (FOS) 51.0 52.0 50.0

Contrast (SFM) 43.0 51.0 34.0

Sum entropy 58.0 66.0 48.0

Entropy 61.0 69.0 50.0

Fig. 5 Classification performance (accuracy, sensitivity, and
specificity) of Relief-F method versus the number of
selected features
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features selected by the Relief-F method. Using the ex-
perimental results, a set of nine most discriminating fea-
tures, that include, FD26, Euler number, solidity, mean,
FD14, FD13, periodicity, skewness, and contrast, which
yielded higher accuracy, were selected out of the top 20
most discriminating features selected by the Relief-F al-
gorithm. Table 13 presents a list of the selected nine fea-
tures along with their feature models.
The best classification results (accuracy = 90.4%, sensi-

tivity = 92.0%, and specificity = 88.0%) were obtained
when the proposed set of the top nine most discrimina-
tive features was used for classification by employing the
cosine variant of the k-NN classifier with the number of
neighbors k = 5 and squared inverse distance weight. For
validation purposes, the selected set of the nine most
discriminative features was used for classification by
employing six different state-of-the-art classifiers. The
classification results are presented in Table 14.
A detailed analysis of the results presented in Table 15

showed that the k-NN classifier performed better than
other state-of-the-art classifiers in terms of classification
accuracy, sensitivity, and specificity. These results sup-
port our assertion of proposing the nine most discrim-
inative features out of the pool of 125 features using the
k-NN classifier. Finally, the following observations were
drawn from the analysis of all the experimental results
presented in the above sections:

� Geometric features perform better than textures in
the classification of breast masses in mammograms.

� The Fourier descriptor feature (FD26) is listed at the
top position among the most discriminative features.

� Out of the seven texture feature models employed in
this study, the SFM and FOS feature models
perform better than the other texture feature
models.

� The cosine variant of the k-NN performs better than
the other variants of k-NN.

� No single feature or group of features of the same
category can become effective for use in mass
classification applications. Therefore, features from
different classes must be grouped to achieve the best
classification results.

� Although geometric features are more discriminative
than texture features, both geometric and texture
features need to be combined to obtain the best
classification results. In this work, the classification
accuracies of the geometric and texture features
improved from 75.0% and 67.0%, respectively, to
76.0% when combined.

� Feature selection contributed significantly to
improving classification performance. Among the
four filter-based feature selection algorithms
employed in this study, Relief-F feature selection
techniques performed better than the other three al-
gorithms. Classification accuracy further improved
from 76.0% to 85.2% by using the top 20 most dis-
criminative features selected by the Relief-F method.

� The classification accuracy showed a rise from
85.2% to 90.4% when using a set of nine
experimentally selected features out of the 20
features selected by the Relief-F method.

Comparison with previous works
The present study employs conventional machine learn-
ing algorithms, hence, it would be appropriate to com-
pare the results with those of existing studies that have
used conventional machine learning algorithms on the
INbreast dataset. In Table 15, the results of the present
study were compared with a recently published study by
Hans et al. [55], in which the authors used conventional
machine learning algorithms for feature selection and
breast mass classification using the INbreast dataset. In

Table 13 Experimentally selected top nine most discriminative
features out of 20 features selected by Relief-F method

Rank Feature index Feature name Feature model

1 F99 FD26 Fourier descriptor

2 F53 Euler number Shape descriptor

3 F55 Solidity Shape descriptor

6 F20 Mean FOS

7 F87 FD14 Fourier descriptor

10 F86 FD13 Fourier descriptor

13 F26 Periodicity SFM

17 F22 Skewness (FOS) FOS

18 F25 Contrast (SFM) SFM

Table 14 Classification results obtained for six different state-of-
the-art classifiers using a set of nine most discriminative features

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

k-NN [49] 90.4 92.0 88.0

SVM [50] 86.1 87.7 84.0

DT [51] 73.0 80.0 64.0

NB [52] 74.8 70.8 80.0

RF [53] 78.4 78.4 78.0

ET [54] 81.7 84.6 78.0

Table 15 Comparison with previous work

Reference Dataset
used

Feature selection Classifier
used

Accuracy (%)

Hans et al. [55] INbreast Opposition-based
Harries Hawk
Optimization

k-NN 78.8

Present study INbreast Relief-F k-NN 90.4
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ref. [55], the authors used the Opposition-based Harries
Hawk Optimization algorithm for the selection of a re-
duced set of features out of a set of 54 texture and shape
features and the k-NN classifier for the classification of
breast masses into malignant and benign categories.
The above results clearly show that the proposed sys-

tem achieved much higher accuracy than the accuracy
achieved in the previous work for the same dataset and
by employing the same classifier, that is, k-NN. This im-
provement in accuracy can be linked to two concepts: in
the present study, a wide range of texture and geometric
feature models was used for feature extraction and the
selection of the nine most discriminating features by
employing the Relief-F feature selection algorithm.

Conclusions
In this study, a comparative analysis of the proficiencies
of individual and various combinations of texture and
geometric features in the classification of breast masses
was conducted. An improved machine learning frame-
work has been proposed, which utilizes a reduced set of
the most discriminating textures and geometric features
for the classification of breast masses. Total 125 texture
and geometric measures were extracted for each of the
115 mass lesions extracted from 106 FFDM images
taken from the INbreast dataset. The discriminative cap-
abilities of the individual and various combinations of
texture and geometric features were investigated by
evaluating the corresponding classification accuracies.
To reduce the dimensionality of the extracted feature
set, four different state-of-the-art feature selection algo-
rithms, that is, Relief-F, pearson correlation coefficient,
neighborhood component analysis, and term variance
were applied for the selection of the top 20 most dis-
criminating features. Further experimentation revealed a
set of nine most discriminating features out of the 20
features selected by the Relief-F feature selection algo-
rithm, which yielded higher classification accuracy, these
included FD26 (Fourier descriptor), Euler number, solid-
ity, mean, FD14, FD13, periodicity, skewness, and con-
trast. Performance comparisons were conducted among
several machine learning algorithms, including k-NN,
SVM, DT, NB, RF, and ET. The k-NN with the number
of neighbors k = 5 and squared inverse distance weight,
outperformed all other algorithms, giving an accuracy of
90.4%, sensitivity of 92.0%, and specificity of 88.0% for
the classification of benign and malignant breast masses.
The proposed set of features resulted in an improvement
in the sensitivity value from 73.0% (without feature se-
lection) to 92.0% (with feature selection), which is the
most desired attribute in medical diagnostic systems.
The main objective of this study was to investigate the

discriminative capabilities of the individual and different
sets of geometric and texture features; therefore, filter-

based feature selection techniques have been employed
for the selection of the most discriminative top 20 fea-
tures. The classification results can be further improved
using wrapper-based feature selection methods. As a fu-
ture direction, investigation and use of the latest
wrapper-based feature selection algorithms are advised
to further improve the classification performance. Fur-
ther deep learning-based approaches can also be ex-
plored for the classification of breast masses in the near
future.
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