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Abstract 

Deep simulations have gained widespread attention owing to their excellent acceleration performances. However, 
these methods cannot provide effective collision detection and response strategies. We propose a deep interac‑
tive physical simulation framework that can effectively address tool-object collisions. The framework can predict the 
dynamic information by considering the collision state. In particular, the graph neural network is chosen as the base 
model, and a collision-aware recursive regression module is introduced to update the network parameters recursively 
using interpenetration distances calculated from the vertex-face and edge-edge tests. Additionally, a novel self-
supervised collision term is introduced to provide a more compact collision response. This study extensively evaluates 
the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation 
efficiency.
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Introduction
Many computer graphics applications, such as computer 
games, movie production, and fashion design, require 
physical simulation. Traditional numerical calculation 
methods produce physically accurate and visually excel-
lent results. However, these methods are time consum-
ing. Consequently, they cannot satisfy the performance 
requirements for interactive applications.

Deep simulation methods have emerged as popular 
alternatives to traditional numerical calculation meth-
ods owing to the rapid development of deep learning 
techniques. These methods [1–4] use the ability of neu-
ral networks to learn nonlinear functions to propose 
differentiable models that output deformable objects as 
functions of the target shape, pose, motion, and other 
design parameters. However, these methods perform 
poorly in collision detection and response (CDR), which 
has a significant impact on visual realism and simulation 

accuracy. To avoid interpenetration, these methods man-
ually set a relatively large collision threshold in the train-
ing data generation process [1]. However, a manually set 
threshold cannot meet the requirements for an accurate 
CDR.

This study proposes a framework for collision-aware 
interactive physical simulation using a graph neural net-
work (GNN), which can achieve a CDR function similar 
to continuous collision detection (CCD), which is the 
most effective method for solving the CDR problem in 
traditional physical simulation. The GNN was used as 
the base model because it can provide complete vertex-
edge-face information, which can be used intuitively in 
basic geometric primitive collision tests. Additionally, 
a novel collision-aware recursive regression module is 
introduced to update the network parameters recursively 
using the interpenetration distances calculated from the 
vertex-face and edge-edge tests.

Using a regression module, our model detects colli-
sions. Finally, to provide a compact collision response, 
a novel self-supervised term is introduced. In summary, 
our main contributions are as follows: (1) propose a 
GNN with a collision-aware recursive regression module 
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to effectively sense and respond to tool-object colli-
sions; (2) a novel self-supervised collision term is intro-
duced to reduce the interpenetration errors in unseen 
(that is, test) sequences and provide a more compact 
collision response; and (3) the proposed method was 
extensively evaluated in several common interactive sim-
ulation scenes with vertex-face, edge-face, and face-face 
collisions.

Related works
This section reviews three main areas: deep simulation, 
CCD, and GNNs.

Deep simulation
Neural networks can be used as effective function 
approximators in physical systems. For linear elastic 
deformation, Luo et  al. [3] proposed a highly reusable 
and efficient neural network-based nonlinear deform-
able simulation framework, which partially restores the 
force-displacement relationship by warping the simu-
lated nodal displacement, and used a simplistic consti-
tutive model to infer the linear elasticity. For nonlinear 
elastic deformation, Holden et al. [1] combined subspace 
simulation techniques with machine learning to support 
interactions with external objects. Romero et al. [4] used 
a model formula with nonlinear corrections applied to 
the local undeformable setting and decoupled internal 
and external contact-driven corrections.

The collision process is one of the physical simulation 
difficulties associated with deep learning techniques. 
The most basic method is to learn the implicit collision 
relations between collision objects. Teng et  al. [5] man-
aged self-collisions by applying forces on a sparse set of 
de-projected simulation points. They supported external 
collisions by allowing partial, albeit costly, full-space sim-
ulations in collision-prone mesh areas. Additionally, Tan 
et al. [6] presented a learning-based method that synthe-
sizes collision-free 3D human poses. They decomposed 
whole-body collisions into groups of collisions between 
localized body parts using a bi-level autoencoder. Pfaff 
et  al. [7] took advantage of the excellent explanatory 
capability of GNNs for graph datasets (mesh-based data-
sets), and their model can learn the dynamics of a wide 
range of physical systems, from cloth simulation over 
structural mechanics to fluid dynamics directly. In this 
study, a GNN is used as a base model because it can learn 
complete vertex-edge-face information.

CCD
CCD is widely applied in many areas, including physical-
based simulation, computer-aided design/computer-
aided manufacturings, and robot motion planning. Its 
main purpose is to use some form of the interpolating 

trajectory to check for collisions between two discrete 
positions of objects or primitives. A common method of 
CCD is to simply enclose the bounding volumes (BVs) at 
the beginning and end of a motion step using a swept vol-
ume. Axis-aligned bounding boxes are usually chosen for 
this method. Coming and Staadt [8] proposed a velocity-
aligned discrete oriented polytopes as a type of swept 
volume for underlying spheres as BVs. Additionally, 
Redon et  al. [9] proposed an oriented bounding boxes 
algorithm. Penetration depth-based detection is another 
method of CCD. The minimum distance is not a good 
measure for defining repelling forces, and computing the 
exact impact time using CCD is too time-consuming for 
real-time applications. Redon and Lin [10] estimated the 
local penetration depth on the graphics processing unit 
using the local penetration direction computed for these 
regions. Tang et al. [11] traced the contact features along 
their deforming trajectories and accumulated penalty 
forces along the penetration time intervals between over-
lapping feature pairs.

Choi et  al. [12] presented a framework for the CCD 
of composite quadric models with piecewise linear or 
quadric surface patches as boundary surfaces and conic 
curves or line segments as boundary curves. Although 
these methods can effectively provide CDR in traditional 
physical simulations, deep simulations remain an open 
problem.

GNNs
GNNs have been shown to be effective representations 
for learning large-scale tasks [13]. A GNN can effectively 
learn knowledge representation [14], message passing 
[15], and encode long-range dependencies (video pro-
cessing). GNNs also perform well in dynamic physi-
cal systems, such as for climate prediction [16], with an 
emphasis on individual objects [17] and their relations 
[18], partially observable systems [19], prevalent interac-
tions within physical systems [14], hierarchically organ-
ized particle systems [20], or more generally physical 
simulation [7, 21, 22].

Methods
The objective of the study is to design a deep interac-
tive physical simulation framework that can effectively 
address tool-object collisions. A GNN-based encoder-
processor-decoder architecture was chosen as the base-
line, which can provide complete vertex-edge-face 
information. To detect tool-object collisions, a colli-
sion-aware recursive regression module that uses inter-
penetration distances calculated from vertex-face and 
edge-edge tests to recursively update network parameters 
is introduced. Furthermore, a novel self-supervised colli-
sion term to provide a more compact collision response 
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is introduced to reduce the interpenetration errors in 
unseen (that is, test) sequences. Figure 1 shows an over-
view of the proposed method.

GNN‑based architecture
A GNN-based encoder-process-decoder architecture is 
used to learn the dynamic information. GNNs, compared 
with other networks, can provide complete vertex-edge-
face information. In particular, the dynamic information 
is encoded to a mesh graph, passed the messages on the 
mesh graph, and adapted the mesh discretization dur-
ing the forward simulation. The mesh discretization 
information of the latent space contains the dynamic 
information of the system, and the mesh discretization 
information can be decoded to learn the dynamic infor-
mation of the system. Figure  2 shows the network-spe-
cific configuration.

A combined mesh M =

(

Mt
X ,M

t+1
Y

)

 is the model 
input, where Mt

X = (VX ,EX ) is the simulation mesh of 
the deformable object at time t, nodes VX connected by 
mesh edges EX an Mt+1

Y

(

Mt ′

Y ,Pt+1

)

= (VY ,EY ) is the 
simulation mesh of tool at time t + 1, nodes VY connected 
by mesh edges EY . Additionally, Pt + 1(pt + 1, ot + 1) is the 
pose of the tool (position pt + 1 and orientation ot + 1) at 

time t + 1 and Mt ′

Y  is the base tool mesh at time t′. We 
used Pt + 1 and Mt ′

Y  to calculate the tool mesh Mt+1
Y  at 

time t + 1. Each node i ∈ M is associated with coordinates 
ui, additional dynamic information qi.

Encoder: The combined mesh is encoded into a multi-
graph G = (V, E). The nodes in the mesh correspond to 
the nodes in the graph, and the edges in the mesh corre-
spond to the E in the graph. They are used to calculate 
the dynamic information inside the system. E handles 
dynamic information external to the system, such as col-
lisions and contacts, which are the overall information of 
the system. An edge feature is defined as follows: 
eij

(

eWij , e
M
ij

)

 , where eMij ∈ E and eWij = ui − uj , if 
|ui − uj| < rW, rW is the collision radius. If the world dis-
tance between two nodes is less than rW, the two nodes 
may collide. The node feature vi is represented as a 
dynamic feature ai and a one-hot vector of node types. 
Finally, the node and edge features are encoded by two 
latent layers multilayer perceptrons (MLPs) ϵE, ϵV into a 
128 dimensional hidden vector.

Processor: Message-passing blocks were used to pass 
messages on the mesh graph and adapt the mesh dis-
cretization during forward simulation. The processor 
consists of L identical message passing blocks, which 

Fig. 1  Overview of the proposed method. GNN is the base model. A collision-aware recursive regression module updates the network parameters 
recursively using interpenetration distances calculated from vertex-face and edge-edge tests. A novel self-supervised collision term (random latent 
space vector zrand ∼ (0, 1)) provides a more compact collision response
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generalizes GraphNet blocks to multiple edge sets, and 
L = 2 by default. Each block contains a separate set of net-
work parameters and is sequentially applied to the output 
of the previous block, updating the edge eij, and node vi 
embeddings to e′ij and v′i , respectively, by the following:

where f  E and f  V are implemented using two latent-
layer MLPs with residual connections. Then, the pro-
posed model learns the dynamic information latent space 
at time t + 1, the key to which is to decode the latent 
dynamic information to the real physical space.

Decoder: To transform the latent dynamic informa-
tion space into real physical dynamic information, a two 
latent-layer MLP, δV, was used as a decoder to update the 
dynamic information of the nodes in the mesh by con-
verting the latent node feature vi at time t to the dynamic 
feature ai of a deformable object at time t. The dynamic 
feature ai is the derivative of the dynamic information qi 
at time t. The forward Euler integration can be used to 
calculate the dynamic information qit+1 at time t + 1. For 
first-order systems, qit+1 = ai + qit , whereas for second-
order systems, qit+1 = ai + 2qit − qit−1.

Furthermore, to train a collision-aware model that 
learns dynamic information and tool-object collisions, 

(1)e′ij ← f E
(

eij , vi, vj
)

, v′i ← f V
(

vi,
∑

j
e′ij

)

the proposed GNN-based model loss is defined as 
follows:

where  Lq is the dynamic information loss defined as 
follows:

Lccd is the collision-aware recursive regression module’s 
continuous collision-detection loss, which is explained in 
detail in collision-aware recursive regression module sec-
tion. Lcompact is the self-supervised term loss that provides 
a compact collision response, which is explained in detail 
in self-supervised term section.

Collision‑aware recursive regression module
The message-passing architecture learns dynamic infor-
mation. However, it is difficult to detect the collision 
information in the system. To address this problem, the 
architecture outputs are used as the inputs to the col-
lision-aware recursive regression module to calculate 
the interpenetration distance and update the network 
parameters recursively. Additionally, a novel self-super-
vised collision term is introduced to provide a more com-
pact collision response.

(2)LGNN = Lq + Lccd + Lcompact

(3)Lq = |q − q|2

Fig. 2  The proposed network configuration. m0, m1, n0, and n1 are the numbers of nodes and edges of the deformable object and tool. The 
encoder, processor and decoder have two latent layers with a latent size 128
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To calculate the interpenetration distance, a non-pen-
etration continuous collision-detection filter that filters 
vertex-face collision and edge-edge collision pairs is used. 
The interpenetration distance is defined as the continu-
ous collision-detection loss of the module as follows:

where ξVF and ξEE are the distances between vertex-face 
and edge-edge collision pairs, respectively.

Traditional iterative continuous collision-detec-
tion algorithms are difficult to integrate into net-
works; therefore, a fast non-penetration continuous 

(4)Lccd = ξVF + ξEE

collision-detection filter [23] is chosen as the collision-
aware recursive regression module to calculate the 
interpenetration distance. Furthermore, because of the 
high computational cost, a culling strategy based on the 
signed distance field (SDF) values is provided. The colli-
sion-detection module contains two terms: the vertex-
face and edge-edge tests. Figures 3(a) and 4(a) show the 
vertex-face and edge-edge tests, respectively.

Vertex-face test: For a triangle Tt and a vertex Pt 
defined by the start and end positions during the inter-
val [0, 1], these positions are linearly interpolated in 
the interval with respect to the time variable t. If the 

Fig. 3  Vertex-face test: To perform a vertex-face test between a deforming triangle (defined by a0, b0, and c0 at t = 0, and a1, b1, and c1 at t = 1) and 
a moving vertex (defined by p0 at t = 0 and p1 at t = 1), coplanarity between the vertex and the triangle by finding a t (t ∈ [0, 1]) when the projected 
distance along the normal vector of the triangle is equal to zero, that is, (pt − at) · nt = 0 is checked. a: Deforming triangle T and deforming vertex p; 
b: Projected distance between pt and Tt

Fig. 4  Edge-edge test: To perform an edge-edge test between the two edges E1 and E2 (defined by u0, v0, and k0, l0 at t = 0, and u1, v1, and k1, l1 at 
t = 1), the coplanarity conditions of these vertices by finding a t (t ∈ [0, 1]) when the projected distance between lt and the triangle defined by kt, ut 
and vt is equal to zero, that is, (lt − kt) · nt = 0 is checked
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following four scalar values, A, B, 2∗C+F
3

 , and 2∗D+E
3

 have 
the same sign, Tt and Pt will not be coplanar during the 
interval:

where n0 is the normal of △a0b0c0, n1 is the normal of 
△a1b1c1, and n =

n0+n1−

(

�⃗vb−��⃗va
)

×

(

�⃗vc−��⃗va
)

2
, ���⃗va is the vector of a0a1, −→vb is 

the vector of b0b1, −→vc  is the vector of c0c1.
Edge-edge test: For two edges E1 and E2 defined by the 

start and positions during the interval [0, 1], these posi-
tions are linearly interpolated in the interval with respect 
to the time variable t. If the following four scalar values: 
A′, B′, 2∗C

′+F ′

3
 , and 2∗D

′+E′

3
 have the same sign, E1 and E2 

will not be coplanar during the interval.

where n′0 is the normal of △u0k0v0, n′1 is the normal of 
△u1k1v1, and n� = n�

0
+n�

1
−

(

��⃗vu−��⃗vk
)

×

(

�⃗vv−��⃗vk
)

2
 , −→vk  is the vector of k0k1, −→vu 

is the vector of u0u1, −→vv  is the vector of v0v1.
The computation cost of every vertex-face and edge-

edge pair is very large; therefore, the vertexes which SDF 
values that are smaller than a certain value before filter-
ing are culled. The filtered vertex-face and edge-edge 
pairs that did not collide and the rest were defined as the 
collision pairs.

For vertex-face collision pairs, γt0,t0+1 are vertex-face 
pairs during the interval frame [t0, t0 + 1], and the vertex-
face pairs collide at time t0 + 1. Figure 3(b) shows the ver-
tex-face distance at time interval  [0, 1]. To reduce the 
number of vertex-face collision pairs, the distance 
between vertex-face pairs is reduced. Dt0,t0+1

vf  is defined 
as the distance between vertex-face pairs during the 
interval frame interval [t0, t0 + 1]. Therefore, the vertex-
face loss is defined as follows:

where

A = (p0 − a0) n0
B = (p1 − a1) n1
C = (p0 − a0) n
D = (p1 − a1) n
E = (p0 − a0) n1
F = (p1 − a1) n0

A’ = (l0 − k0) n’0
B’ = (l1 − k1) n’1
C ’ = (l0 − k0) n’

D’ = (l1 − k1) n’

E’ = (l0 − k0) n’1
F ’ = (l1 − k1) n’0

(5)ξVF = max
(

Dvf

)

For edge-edge collision pairs, ηt0,t0+1 are edge-edge 
pairs during the interval frame  [t0, t0 + 1], and the edge-
edge pairs collide at time t0 + 1. Figure  4(b) shows the 
edge distance at time interval [0, 1]. To reduce the num-
ber of edge-edge collision pairs, the distance between 
edge-edge pairs is reduced. Dt0,t0+1

ee  is defined as the 
distance between edge-edge pairs during the interval 
frame interval [t0, t0 + 1]. Therefore, the edge-edge loss is 
defined as follows:

where

Self‑supervised term
Using the learned dynamic information defined in GNN-
based architecture section and the tool-object collision 
detection module in collision-aware recursive regres-
sion module section, a collision-aware model to learn 
the dynamic information and tool-object collision can 
be trained. However, there were interpenetration errors 
in the unseen (that is, test) sequence. This challenge is 
addressed by learning a compact collision response that 
reliably solves tool-object interpretations. To provide a 
compact collision response, the following self-supervised 
collision term is proposed:

and

where zrand ∼ N (0, 1) , Δ is the collision-free constraint 
threshold, SDF() is the signed distance field of the tool, 
D() is the decoder of our model, and Pt + 1 is the pose of 
the tool at time t + 1. The self-supervised term samples 
the latent space and checks collisions against a constraint 
tool mesh using a self-supervised strategy (that is, ground 
truth positions are not needed for this term). This key 
ingredient allows for thorough sampling of the latent 
space and the learning of a compact collision response 
that reliably solves the tool-object interpenetration 
problem.

The self-supervised loss is derived from ref. [24], which 
requires a consistent distribution of the sampled latent 
space and training data. To enforce a normal distribution 
in the latent space, an additional term LKL is included.

(6)Dvf =

[

D0,1

vf ,D
1,2

vf , . . . ,D
t,t+1

vf

]

(7)ξEE = max(Dee)

(8)Dee =

[

D0,1
ee ,D

1,2
ee , · · · ,D

t,t+1
ee

]

(9)Lcompact = ξRandom+ LKL

(10)ξRandom = max(�− SDF(D(zrand),Pt+1), 0)
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Datasets
Generally, most mesh-based simulation methods are 
suitable for acquiring data for the proposed method. 
The inputs to the training procedure were a raw time 
series of frame-by-frame vertex positions and face indi-
ces. More details about the exact data acquisition pro-
cess used in our results are provided.

All simulations were performed using the incremen-
tal potential contact (IPC) simulation library [25] and 
captured data at 25 fps. The datasets used are shown in 
Fig. 5. The IPC library can provide accurate CDR simu-
lation results. The datasets used in this study involve 
vertex-face collisions (cone-bunny), edge-face collisions 
(knife-torus), and face-face collisions (sphere-mat and 
cylinder-banana). All datasets contain dynamic infor-
mation (velocity), SDF values of the tools, vertex posi-
tions, and face information. The vertex-face collision 
datasets used in this study are cone-bunnies, which 
simulate a cone stabbing a bunny. The edge-face colli-
sion datasets used in this study are knife-torus, which 
simulate a knife cutting a rubber torus. The face-face 
collision datasets used in this study were a sphere-
mat and cylinder-banana. The sphere-mat datasets 

simulated a rigid sphere falling onto a rubber mat, 
whereas the cylinder-banana datasets simulated a rigid 
cylinder pressing a banana. Table  1 shows the model 
complexity of the datasets.

Training
This section introduces the training software environ-
ment, normalization strategies, training noise, and opti-
mization procedures used in this study.

Software: All models were implemented using Tensor-
Flow1, Sonnet1, and the “Graph Nets” library.

Normalization: All input and target vectors ele-
mentwise were normalized to zero mean and unit vari-
ance, using statistics computed online during training. 
Normalization can lead to faster training and better 
performance. Preliminary experiments showed that nor-
malization led to faster training, although the converged 
performance did not improve significantly.

Training noise: Modeling a complex and chaotic sim-
ulation system requires a model to mitigate error accu-
mulation over long rollouts. Because the models in this 
study were trained on ground-truth one-step data, they 
were never presented with input data corrupted by this 

Fig. 5  Applying IPC [25] to generate the datasets used in this study. The IPC library can output accurate CDR simulation results

Table 1  Execution time of the proposed method and IPC

Scene Vertex Edge Face IPC (ms) The proposed method 
(ms)

Speedup

Cone-bunny 3022 9054 6036 2070 75 27.60

Knife-torus 5926 17,772 11,848 6380 60 127.60

Sphere-mat 4439 13,305 8870 2440 135 18.07

Cylinder-banana 3607 10,809 7206 1200 90 13.33
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type of accumulated noise. This means that when a roll-
out is generated by feeding the model with its own noisy, 
previous predictions as input, the fact that its inputs are 
outside the training distribution may lead to more sub-
stantial errors and thus rapidly accumulate further error. 
A simple approach to make the model more robust to 
noisy inputs by corrupting the input positions of the 
model with Gaussian noise is used; thus, the training dis-
tribution is closer to the distribution generated during 
rollouts.

Optimization procedures: The model parameters 
were optimized over this loss with the Adam optimizer 
[26], using a nominal mini-batch size of one. A maximum 
of 1 × 105 gradient update steps was performed with an 
exponential learning rate decay from 104 to 106. While 
models can be trained in fewer steps, this study avoided 
using aggressive learning rates to reduce variance across 
datasets and make comparisons across settings fairer.

Results
This section demonstrates that our model can reliably 
process collisions in the physical system and conduct 
several experiments comparing the baseline, quantitative 
evaluation, and qualitative evaluation in different simu-
lation scenes: face-face collisions, edge-face collisions, 

vertex-face collisions, and ablation studies. The reader is 
referred to the supplemental video for the correspond-
ing animations. The proposed model runs on a PC with a 
central processing unit Intel E5–2637, 128 GB RAM, and 
a GTX 1080 Ti graphics card.

Comparison
A sphere-mat scene is chosen to demonstrate the advan-
tage of the proposed method in processing collisions 
compared with the baseline. The proposed method is 
compared with subphysics [1] and a baseline. The base-
line comes from meshgraphnets [7] without remeshing 
because remeshing changes the topology of the data, 
which is not conducive to evaluating collisions. Figure 6 
shows a comparison between the proposed method and 
the baseline. The top row is the ground truth, the second 
row is the subphysics simulation result, the third row is 
the baseline simulation result, and the bottom row is the 
proposed method simulation result. The results show 
that their method has a large interpenetration area, 
whereas the proposed method has none. Clearly, the pro-
posed method detects collisions in the physical system.

Qualitative evaluation
To demonstrate the effectiveness of the proposed 
method in terms of quality, three different collision 

Fig. 6  Comparison. The top row is the ground truth, the second row is the subphysics simulation result, the third row is the baseline simulation 
result, and the bottom row is the proposed method’s simulation result
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scenarios were defined: vertex-face collision, edge-face 
collision, and face-face collision. Figure  7(a) shows 
the vertex-face collision, Fig. 7(b) shows the edge-face 
collision, and Fig.  7(c) shows the face-face collision. 
In all three figures, the first row shows the simulation 
result of the proposed method, and the second row 
shows the ground truth. None of the three scenes had 

any interpenetration of the proposed method. Table  2 
shows the quantitative evaluation of the collision elimi-
nation. The table shows that the proposed method can 
effectively eliminate collision errors. According to the 
results in the figures and table, the proposed method 
can process vertex-face, edge-face, and face-face 
collisions.

Fig. 7  Qualitative evaluation. The proposed method is evaluated in three different collision scenes: vertex-face, edge-face, and face-face collisions. 
For each scene, the first row is the simulation result of the proposed method, and the second row is the ground truth. a: Vertex-face collisions; b: 
Edge-face collisions; c: Face-face collisions

Table 2  Quantitative evaluation of collision elimination

Nvf, dvf, mean, dvf, max, Nee, dee, mean and dee, max represent mean vertex-vertex collision number, mean vertex-vertex collision interpenetration distance, max vertex-
vertex collision interpenetration distance, mean edge-edge collision number, mean edge-edge collision interpenetration distance and max edge-edge collision 
interpenetration distance, respectively

Scene Nvf (%) dvf, mean (%) dvf, max (%) Nee (%) dee, mean (%) dee, 

max (%)

Vertex-face collision 69.61 72.23 69.63 – – –

Edge-edge collision 62.50 53.67 49.84 – – –

Face-face collision 58.15 58.16 59.51 34.46 42.22 45.22
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Fig. 8  Quantitative evaluation. The proposed method is evaluated using the numbers and interpenetration distance of vertex-face and edge-edge 
collisions. a: Vertex-face collision evaluation; b: Edge-face collision evaluation; c: Face-face collision evaluation
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Quantitative evaluation
To demonstrate the effectiveness of the proposed method, 
three different scenes of collisions were defined: vertex-face, 
edge-face, and face-face collisions. Four collision quantita-
tive evaluations were used: vertex-face collision numbers, 
vertex-face collision interpenetration distance, edge-edge 
collision numbers, and edge-edge collision interpenetration 
distance to judge the effectiveness of the proposed method’s 
processing collision. Figure 8 shows four collision quantita-
tive evaluation results for three collision scenes.

Because ref. [1] lacks a CCD module, it is excluded from 
the comparison. Clearly, for the four collision quantitative 
evaluations, the proposed method is fairly less accurate 
than the baseline [7] and is close to the ground truth. The 
results demonstrate that the proposed method can effec-
tively reduce collision errors in physical systems.

Ablation study
The self-supervised term was removed from the proposed 
method to demonstrate the effectiveness of the random 
latent space in completing CDR. Figure 9 shows the com-
parison results. The first row shows the proposed method’s 
simulation results, while the second row shows the ablation 
simulation results. The figure shows that there are interpen-
etrations if the self-supervised term is removed. The results 
show that using the self-supervised term to complete the 
collision response is crucial for the proposed method.

Performance
The proposed method is compared with the ground 
truth physical simulator IPC to evaluate its performance. 
Table  1 presents the results of this comparison. As the 
table shows, the proposed method leverages IPC by at 
least one order of magnitude.

Discussion
In this section, the advantages and challenges of the 
proposed method are discussed. The proposed method 
is compared with other state-of-the-art methods. 

Although the simulation results of the other methods 
have interpenetrations, the proposed method has none. 
Clearly, the proposed method detects collisions in the 
physical system better than the other methods. The 
proposed method was qualitatively and quantitatively 
evaluated in three collision scenarios: vertex-face, edge-
face, and face-face collisions. The proposed method can 
visually produce no interpenetration results and effec-
tively reduce the number of vertex-face collision and 
edge-edge collisions, resulting in visually excellent and 
physically accurate results. An ablation study was con-
ducted to demonstrate the effectiveness of the random 
latent space for complete CDR. Some interpenetrations 
occur without a random latent space, demonstrating that 
our self-supervised term effectively reduces interpen-
etrations. Furthermore, compared to traditional CCD 
methods (IPC), the proposed method leverages at least 
one order of magnitude. In conclusion, to the best of our 
knowledge, the proposed deep learning-based frame-
work can effectively address tool-object collisions and is 
a state-of-the-art method.

However, this study only focused on the interaction 
between a rigid tool and soft body. The penetration num-
ber of the vertex face and edge increases sharply as the 
model’s complexity increases. The existing framework 
does not support large-scale interactive simulation com-
putations owing to the limitations of the existing stor-
age and computational power of the workstation. Future 
studies should introduce multiscale representations to 
achieve large-scale interactive simulations.

Conclusions
In this study, a deep interactive physical simulation 
framework that can effectively address tool-object colli-
sions is presented. This was achieved using a GNN-based 
architecture and collision-aware recursive regression 
module to detect collisions. Additionally, a novel self-
supervised collision term is introduced to provide a more 
compact collision response. The proposed method was 

Fig. 9  Ablation study. The first row is the proposed method’s simulation result, and the second row is the ablation simulation results
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extensively evaluated and the results demonstrated that 
it can effectively reduce interpenetration artifacts while 
ensuring high simulation efficiency. However, the trained 
model could only be applied to simulations using the 
same tool object. Further research must be conducted to 
enhance the generalizability of this study’s results. The 
existing framework does not support large-scale inter-
active simulation computations owing to the limitations 
of the existing storage and computational power of the 
workstation. Furthermore, future work must introduce 
multiscale representations to achieve large-scale interac-
tive simulations.
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