Blankenberg FG, Strauss HW. Recent advances in the molecular imaging of programmed cell death: part II--non-probe-based MRI, ultrasound, and optical clinical imaging techniques. J Nucl Med. 2013;54:1–4.

Google Scholar

Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4:1072–84.

Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T, Bao C, Liu H, Wang Z, Wang J, Liu Z, Liu H, Tian J. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat Commun. 2015;6:7560.

Google Scholar

Wang K, Chi C, Hu Z, Liu M, Hui H, Shang W, Peng D, Zhang S, Ye J, Liu H, Tian J. Optical molecular imaging Frontiers in oncology: the pursuit of accuracy and sensitivity. Engineering. 2015;1:309–23.

Google Scholar

Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, et al. Objective comparison of particle tracking methods. Nat Methods. 2014;11:281–9.

Leng CC, Tian J. Mathematical method in optical molecular imaging. Sci China Inform Sci. 2015;58:1–13.

MATH
Google Scholar

Qin CH, Feng JC, Zhu SP, Ma XB, Zhong JH, Wu P, Jin ZY, Tian J. Recent advances in bioluminescence tomography: methodology and system as well as application. Laser Photonics Rev. 2014;8:94–114.

Google Scholar

Wang K, Wang Q, Luo Q, Yang X. Fluorescence molecular tomography in the second near-infrared window. Opt Express. 2015;23:12669–79.

Google Scholar

Xie W, Deng Y, Wang K, Yang X, Luo Q. Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements. Opt Lett. 2014;39:4148–51.

Google Scholar

Zhang S, Wang K, Liu HB, Leng CC, Gao Y, Tian J. Reconstruction method for in vivo bioluminescence tomography based on the split Bregman iterative and surrogate functions. Mol Imaging Biol. 2017;19:245–55.

Google Scholar

Fan-Minogue H, Cao Z, Paulmurugan R, Chan CT, Massoud TF, Felsher DW, Gambhir SS. Noninvasive molecular imaging of c-Myc activation in living mice. Proc Natl Acad Sci U S A. 2010;107:15892–7.

Google Scholar

Maji D, Solomon M, Nguyen A, Pierce RA, Woodard PK, Akers WJ, Achilefu S, Culver JP, Abendschein DR, Shokeen M. Noninvasive imaging of focal atherosclerotic lesions using fluorescence molecular tomography. J Biomed Opt. 2014;19(11):110501.

Google Scholar

Miller JP, Maji D, Lam J, Tromberg BJ, Achilefu S. Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe in vivo. Biomed Opt Express. 2017;8:3095–109.

Google Scholar

van Dam GM, Koller M, Qiu SQ, Linssen MD, de Vries J, Jansen L, Kelder W, de Jong JS, Jorritsma-Smit A, van der Vegt B, Robinson DJ, Nagengast WB. Phase II in-human dose escalation study of the optical molecular imaging tracer bevacizumab-800cw for molecular fluorescence guided surgery in primary breast cancer patients. Cancer Res. 2017;7777:P4-01-01-P04-01-01.

van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, Bart J, Low PS, Ntziachristos V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17:1315–9.

Google Scholar

Whitney MA, Crisp JL, Nguyen LT, Friedman B, Gross LA, Steinbach P, Tsien RY, Nguyen QT. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol. 2011;29:352–6.

Google Scholar

Zhang Y, Yin G, Zhao H, Ma W, Gao F, Zhang L. Assessing pharmacokinetics of indocyanine green-loaded nanoparticle in tumor with a dynamic diffuse fluorescence tomography system. SPIE BiOS. 2018;10497:7.

Solomon SB, Cornelis F. Interventional molecular imaging. J Nucl Med. 2016;57:493–6.

Google Scholar

Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP. Hybrid radiative-transfer-diffusion model for optical tomography. Appl Opt. 2005;44:876–86.

Google Scholar

Chen X, Gao X, Chen D, Ma X, Zhao X, Shen M, Li X, Qu X, Liang J, Ripoll J, Tian J. 3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images. Opt Express. 2010;18:19876–93.

Google Scholar

Chandrasekhar S. Radiative transfer. New York: Dover Publications Inc; 1960.

MATH
Google Scholar

Ren K, Abdoulaev GS, Bal G, Hielscher AH. Algorithm for solving the equation of radiative transfer in the frequency domain. Opt Lett. 2004;29:578–80.

Google Scholar

Sreerekha TR, Buehler SA, Emde C. A simple new radiative transfer model for simulating the effect of cirrus clouds in the microwave spectral region. J Quant Spectrosc Ra. 2002;75:611–24.

Google Scholar

Binzoni T, Leung TS, Gandjbakhche AH, Ruefenacht D, Delpy DT. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics. Phys Med Biol. 2006;51:N313–22.

Google Scholar

Pfeiffer N, Chapman GH. Successive order, multiple scattering of two-term Henyey-Greenstein phase functions. Opt Express. 2008;16:13637–42.

Google Scholar

Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl Opt. 1996;35:3270–4.

Google Scholar

Tualle JM, Tinet E. Derivation of the radiative transfer equation for scattering media with a spatially varying refractive index. Opt Commun. 2003;228:33–8.

Google Scholar

Guo X, Liu X, Wang X, Tian F, Liu F, Zhang B, Hu G, Bai J. A combined fluorescence and microcomputed tomography system for small animal imaging. IEEE Trans Biomed Eng. 2010;57:2876–83.

Google Scholar

Han D, Yang X, Liu K, Qin C, Zhang B, Ma X, Tian J. Efficient reconstruction method for L1 regularization in fluorescence molecular tomography. Appl Opt. 2010;49:6930–7.

Google Scholar

Hyde D, Miller EL, Brooks DH, Ntziachristos V. Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imaging. 2010;29:365–74.

Google Scholar

Lin Y, Bolisay L, Ghijsen M, Kwong TC, Gulsen G. Temperature-modulated fluorescence tomography in a turbid media. Appl Phys Lett. 2012;100:73702–737024.

Google Scholar

Lin Y, Kwong TC, Bolisay L, Gulsen G. Temperature-modulated fluorescence tomography based on both concentration and lifetime contrast. J Biomed Opt. 2012;17:056007.

Google Scholar

Song X, Wang D, Chen N, Bai J, Wang H. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm. Opt Express. 2007;15:18300–17.

Google Scholar

Zhang B, Yang X, Qin C, Liu D, Zhu S, Feng J, Sun L, Liu K, Han D, Ma X, Zhang X, Zhong J, Li X, Yang X, Tian J. A trust region method in adaptive finite element framework for bioluminescence tomography. Opt Express. 2010;18:6477–91.

Google Scholar

Aydin ED, de Oliveira CR, Goddard AJ. A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method. Med Phys. 2002;29:2013–23.

Google Scholar

Grella K, Schwab C. Sparse tensor spherical harmonics approximation in radiative transfer. J Comput Phys. 2011;230:8452–73.

MathSciNet
MATH
Google Scholar

Guo HB, Hou YQ, He XW, Yu JJ, Cheng JX, Pu X. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J Innov Opt Health Sci. 2014;7:1350057.

Google Scholar

Han D, Tian J, Liu K, Feng J, Zhang B, Ma X, Qin C. Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation. IEEE Trans Biomed Eng. 2010;57:2564–7.

Google Scholar

Khan T, Thomas A. Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices. Opt Commun. 2005;255:130–66.

Google Scholar

Klose AD. The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review. J Quant Spectrosc Radiat Transf. 2010;111:1852–3.

Google Scholar

Klose AD, Larsen EW. Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys. 2006;220:441–70.

MathSciNet
MATH
Google Scholar

Duderstadt JJ, Martin WR. Transport Theory. New York: John Wiley; 1979.

MATH
Google Scholar

Simon RA, Jeremy CH. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol. 1997;42:841.

Google Scholar

Rasmussen JC, Joshi A, Pan T, Wareing T, McGhee J, Sevick-Muraca EM. Radiative transport in fluorescence-enhanced frequency domain photon migration. Med Phys. 2006;33:4685–700.

Google Scholar

Arridge SR, Dehghani H, Schweiger M, Okada E. The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions. Med Phys. 2000;27:252–64.

Google Scholar

Alexandrakis G, Farrell TJ, Patterson MS. Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain. Appl Opt. 2000;39:2235–44.

Google Scholar

Hayashi T, Kashio Y, Okada E. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Appl Opt. 2003;42:2888–96.

Google Scholar

Wang L, Jacques SL. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. J Opt Soc Am A Opt Image Sci Vis. 1993;10:1746–52.

Google Scholar

Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP. Finite element model for the coupled radiative transfer equation and diffusion approximation. Int J Numer Meth Eng. 2006;65:383–405.

MathSciNet
MATH
Google Scholar

Martelli F, Sassaroli A, Yamada Y, Zaccanti G. Analytical approximate solutions of the time-domain diffusion equation in layered slabs. J Opt Soc Am A Opt Image Sci Vis. 2002;19:71–80.

Google Scholar

Lian LC, Deng Y, Xie WH, Xu GQ, Yang XQ, Zhang ZH, et al. Enhancement of the localization and quantitative performance of fluorescence molecular tomography by using linear nBorn method. Opt Express. 2017;25:2063–79.

Wang X, Cao X, Zhang B, Liu F, Luo JW, Bai J. A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method. Med Biol Eng Comput. 2013;51:7–17.

Google Scholar

Shen H, Wang G. A tetrahedron-based inhomogeneous Monte Carlo optical simulator. Phys Med Biol. 2010;55:947–62.

Google Scholar

Alerstam E, Svensson T, Andersson-Engels S. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt. 2008;13:060504.

Google Scholar

Quan G, Gong H, Deng Y, Fu J, Luo Q. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units. J Biomed Opt. 2011;16:026018.

Google Scholar

Ren N, Liang J, Qu X, Li J, Lu B, Tian J. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt Express. 2010;18:6811–23.

Google Scholar

Cong AX, Hofmann MC, Cong W, Xu Y, Wang G. Monte Carlo fluorescence microtomography. J Biomed Opt. 2011;16:070501.

Google Scholar

Cong W, Wang G. Boundary integral method for bioluminescence tomography. J Biomed Opt. 2006;11:020503.

Google Scholar

Qin C, Tian J, Yang X, Liu K, Yan G, Feng J, et al. Galerkin-based meshless methods for photon transport in the biological tissue. Opt Express. 2008;16:20317–33.

Lu Y, Zhang X, Douraghy A, Stout D, Tian J, Chan TF, Chatziioannou AF. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt Express. 2009;17:8062–80.

Google Scholar

Wright S, Schweiger M, Arridge SR. Reconstruction in optical tomography using the PN approximations. Meas Sci Technol. 2007;18:79–86.

Google Scholar

An Y, Liu J, Zhang G, Jiang S, Ye J, Chi C, et al. Compactly supported radial basis function-based meshless method for photon propagation model of fluorescence molecular tomography. IEEE Trans Med Imaging. 2017;36:366–73.

Shi JW, Udayakumar TS, Wang ZQ, Dogan N, Pollack A, Yang YD. Optical molecular imaging-guided radiation therapy part 2: integrated x-ray and fluorescence molecular tomography. Med Phys. 2017;44:4795–803.

Google Scholar

Wang RX, Zhang DG, Zhu LF, Wen XO, Chen JX, Kuang CF, et al. Selectable surface and bulk fluorescence imaging with Plasmon-coupled waveguides. J Phys Chem C. 2015;119:22131–6.

Paulsen KD, Jiang H. Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization. Appl Opt. 1996;35:3447–58.

Google Scholar

Yu DF, Fessler JA. Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE T Med Imaging. 1998;21:159–73.

Google Scholar

Zhu W, Wang Y, Yao Y, Chang J, Graber HL, Barbour RL. Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J Opt Soc Am A Opt Image Sci Vis. 1997;14:799–807.

Google Scholar

Darne C, Lu Y, Sevick-Muraca EM. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update. Phys Med Biol. 2014;59:R1–64.

Google Scholar

Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods. 2012;9:615–20.

Google Scholar

Berninger MT, Mohajerani P, Kimm M, Masius S, Ma X, Wildgruber M, et al. Fluorescence molecular tomography of DiR-labeled mesenchymal stem cell implants for osteochondral defect repair in rabbit knees. Eur Radiol. 2017;27:1105–13.

Deliolanis NC, Ale A, Morscher S, Burton NC, Schaefer K, Radrich K, et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol Imaging Biol. 2014;16:652–60.

Han D, Tian J, Zhu S, Feng J, Qin C, Zhang B, Yang X. A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization. Opt Express. 2010;18:8630–46.

Google Scholar

Mohajerani P, Hipp A, Willner M, Marschner M, Trajkovic-Arsic M, Ma X, et al. FMT-PCCT: hybrid fluorescence molecular tomography-x-ray phase-contrast CT imaging of mouse models. IEEE Trans Med Imaging. 2014;33:1434–46.

Mohajerani P, Ntziachristos V. An inversion scheme for hybrid fluorescence molecular tomography using a fuzzy inference system. IEEE Trans Med Imaging. 2016;35:381–90.

Google Scholar

Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.

Google Scholar

Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7:603–14.

Google Scholar

Yang FG, Ozturk MS, Yao RY, Intes X. Improving mesoscopic fluorescence molecular tomography through data reduction. Biomed Opt Express. 2017;8:3868–81.

Google Scholar

Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y, Weissleder R, Ntziachristos V. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc Natl Acad Sci U S A. 2005;102:18252–7.

Google Scholar

Cong W, Wang G, Kumar D, Liu Y, Jiang M, Wang L, Hoffman E, McLennan G, McCray P, Zabner J, Cong A. Practical reconstruction method for bioluminescence tomography. Opt Express. 2005;13:6756–71.

Google Scholar

Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, Hoffman E, McLennan G, Henry M. In vivo mouse studies with bioluminescence tomography. Opt Express. 2006;14:7801–9.

Google Scholar

Balima O, Charette A, Marceau D. Comparison of light transport models based on finite element and the discrete ordinates methods in view of optical tomography applications. J Comput Appl Math. 2010;234:2259–71.

MathSciNet
MATH
Google Scholar

Feng J, Jia K, Yan G, Zhu S, Qin C, Lv Y, et al. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt Express. 2008;16:15640–54.

Lv Y, Tian J, Cong W, Wang G, Yang W, Qin C, et al. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Phys Med Biol. 2007;52:4497–512.

Naser MA, Patterson MS. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties. Biomed Opt Express. 2010;1:512–26.

Google Scholar

Naser MA, Patterson MS. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed Opt Express. 2010;2:169–84.

Google Scholar

Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol. 2005;50:4225–41.

Google Scholar

Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol. 2005;50:R1–43.

Google Scholar

Milstein AB, Stott JJ, Oh S, Boas DA, Millane RP, Bouman CA, et al. Fluorescence optical diffusion tomography using multiple-frequency data. J Opt Soc Am A. 2004;21:1035–49.

Ripoll J, Schulz RB, Ntziachristos V. Free-space propagation of diffuse light: theory and experiments. Phys Rev Lett. 2003;91:103901.

Google Scholar

Ntziachristos V, Tung CH, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 2002;8:757–60.

Google Scholar

Allard M, Cote D, Davidson L, Dazai J, Henkelman RM. Combined magnetic resonance and bioluminescence imaging of live mice. J Biomed Opt. 2007;12:034018.

Google Scholar

Cao XH, Yang JH, Gao YZ, Guo YR, Wu GR, Shen DG. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18–31.

Google Scholar

Chen ZY, Wang YX, Yang F, Lin Y, Zhou QL, Liao YY. New researches and application progress of commonly used optical molecular imaging technology. Biomed Res Int. 2014;2014:429198.

Google Scholar

Phillips EH, Di Achille P, Bersi MR, Humphrey JD, Goergen CJ. Multi-modality imaging enables detailed hemodynamic simulations in dissecting aneurysms in mice. IEEE T Med Imaging. 2017;36:1297–305.

Google Scholar

Xie WH, Deng Y, Yan DM, Yang XQ, Luo QM. Sparsity-promoting Bayesian approximation error method for compensating for the mismodeling of optical properties in fluorescence molecular tomography. Opt Lett. 2017;42:3024–7.

Google Scholar

Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int J Nanomedicine. 2014;9:33–41.

Google Scholar

Wu LH, Zhao HJ, Wang X, Yi X, Chen WT, Gao F. Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty. Appl Opt. 2014;53:6970–82.

Google Scholar

An Y, Liu J, Zhang G, Ye J, Du Y, Mao Y, et al. A novel region reconstruction method for fluorescence molecular tomography. IEEE Trans Biomed Eng. 2015;62:1818–26.

Baikejiang R, Zhao Y, Fite BZ, Ferrara KW, Li CQ. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method. J Biomed Opt. 2017;22(5):55001.

Google Scholar

Baritaux JC, Hassler K, Unser M. An efficient numerical method for general L(p) regularization in fluorescence molecular tomography. IEEE Trans Med Imaging. 2010;29:1075–87.

Google Scholar

Cao X, Zhang B, Wang X, Liu F, Liu K, Luo J, et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography. Med Biol Eng Comput. 2013;51:849–58.

Dutta J, Ahn S, Li C, Cherry SR, Leahy RM. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys Med Biol. 2012;57:1459–76.

Google Scholar

Guo H, Yu J, He X, Hou Y, Dong F, Zhang S. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization. Biomed Opt Express. 2015;6:1648–64.

Google Scholar

He XL, Wang XD, Yi HJ, Chen YR, Zhang X, Yu JJ, et al. Laplacian manifold regularization method for fluorescence molecular tomography. J Biomed Opt. 2017;22(4):45009.

Lian L, Deng Y, Xie W, Xu G, Yang X, Zhang Z, et al. High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences. Opt Express. 2016;24:19920–33.

Martin S, Simon RA, Ilkka N. Gauss–Newton method for image reconstruction in diffuse optical tomography. Phys Med Biol. 2005;50:2365.

Google Scholar

Pera V, Brooks DH, Niedre M. Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization. Biomed Opt Express. 2016;7:111–31.

Google Scholar

Shi J, Liu F, Pu H, Zuo S, Luo J, Bai J. An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography. Biomed Opt Express. 2014;5:4039–52.

Google Scholar

Shi J, Liu F, Zhang G, Luo J, Bai J. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J Biomed Opt. 2014;19:046018.

Google Scholar

Shi J, Zhang B, Liu F, Luo J, Bai J. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient. Opt Lett. 2013;38:3696–9.

Google Scholar

Yang F, Ozturk MS, Zhao L, Cong W, Wang G, Intes X. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans Biomed Eng. 2015;62:248–55.

Google Scholar

Zhang GL, Liu F, Liu J, Luo JW, Xie YQ, Bai J, et al. Cone beam X-ray luminescence computed tomography based on Bayesian method. IEEE T Med Imaging. 2017;36:225–35.

Zhang J, Shi J, Guang H, Zuo S, Liu F, Bai J, Luo J. Iterative correction scheme based on discrete cosine transform and L1 regularization for fluorescence molecular tomography with background fluorescence. IEEE Trans Biomed Eng. 2016;63:1107–15.

Google Scholar

Zhao L, Yang H, Cong W, Wang G, Intes X. L(p) regularization for early gate fluorescence molecular tomography. Opt Lett. 2014;39:4156–9.

Google Scholar

Zhou Y, Chen MM, Su H, Luo JW. Self-prior strategy for organ reconstruction in fluorescence molecular tomography. Biomed Opt Express. 2017;8:4671–86.

Google Scholar

Gao H, Zhao H. Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization. Opt Express. 2010;18:1854–71.

Google Scholar

Wu P, Liu K, Zhang Q, Xue ZW, Li YB, Ning NA, et al. Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging. J Biomed Opt. 2012;17(12):126012.

Ping W, Yifang H, Kun W, Jie T. Bioluminescence tomography by an iterative reweighted (l)2 norm optimization. IEEE Trans Biomed Eng. 2014;61:189–96.

Google Scholar

Jiang S, Liu J, An Y, Zhang G, Ye J, Mao Y, et al. Novel l 2,1-norm optimization method for fluorescence molecular tomography reconstruction. Biomed Opt Express. 2016;7:2342–59.

Wang BY, Wan WB, Wang YH, Ma WJ, Zhang LM, Li J, et al. An L-p(0 <= p <= 1)-norm regularized image reconstruction scheme for breast DOT with non-negative-constraint. Biomed Eng Online. 2017;16:32.

Freiberger M, Clason C, Scharfetter H. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Appl Opt. 2010;49:3741–7.

Google Scholar

Hyman JM, Flaschka H, Busse FH. Physica D. The ACM Digital Library: Elsevier Science Publishers B. V.; 1992.

Vese LA, Osher SJ. Image denoising and decomposition with total variation minimization and oscillatory functions. J Math Imaging Vis. 2004;20:7–18.

MathSciNet
MATH
Google Scholar

Yao L, Jiang H. Photoacoustic image reconstruction from few-detector and limited-angle data. Biomed Opt Express. 2011;2:2649–54.

Google Scholar

Yao L, Jiang HB. Enhancing finite element-based photoacoustic tomography using total variation minimization. Appl Opt. 2011;50:5031–41.

Google Scholar

Cerussi A, Hsiang D, Shah N, Mehta R, Durkin A, Butler J, et al. Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proc Natl Acad Sci U S A. 2007;104:4014–9.

Ma X, Cheng Z, Jin Y, Liang X, Yang X, Dai Z, et al. SM5-1-conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials. 2014;35:2878–89.

Uddin MJ, Crews BC, Blobaum AL, Kingsley PJ, Gorden DL, McIntyre JO, et al. Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res. 2010;70:3618–27.

Feng J, Qin C, Jia K, Zhu S, Liu K, Han D, et al. Total variation regularization for bioluminescence tomography with the split Bregman method. Appl Opt. 2012;51:4501–12.

Hansen BPC. Analysis of discrete Ill-posed problem by means of L-Curve. Soc Industr Appl Mathem Rev. 1992;34: 561–80.

Hansen PC, Nagy JG, O’Leary DP. Deblurring images : matrices, spectra, and filtering. J Electron Imaging. 2006;17:019901.

MATH
Google Scholar

Chamorro-Servent J, Aguirre J, Ripoll J, Vaquero JJ, Desco M. Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies. Opt Express. 2011;19:11490–506.

Google Scholar

Chaudhari AJ, Ahn S, Levenson R, Badawi RD, Cherry SR, Leahy RM. Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies. Phys Med Biol. 2009;54:4687–704.

Google Scholar

Zhang G, Pu H, He W, Liu F, Luo J, Bai J. Bayesian framework based direct reconstruction of fluorescence parametric images. IEEE Trans Med Imaging. 2015;34:1378–91.

Google Scholar

Ye J, Chi C, Xue Z, Wu P, An Y, Xu H, et al. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method. Biomed Opt Express. 2014;5:387–406.

Ye JZ, Du Y, An Y, Mao YM, Jiang SX, Shang WT, et al. Sparse reconstruction of fluorescence molecular tomography using variable splitting and alternating direction scheme. Mol Imaging Biol. 2018;20:37–46.

Guo HB, He XW, Liu MH, Zhang ZY, Hu ZH, Tian J. Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with Cerenkov luminescence tomography. IEEE T Med Imaging. 2017;36:1337–46.

Google Scholar

Petibon Y, Rakvongthai Y, El Fakhri G, Ouyang J. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies. Phys Med Biol. 2017;62:3539–65.

Google Scholar

Rad JA, Parand K, Abbasbandy S. Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlinear Sci. 2015;22:1178–200.

MathSciNet
MATH
Google Scholar

Hu Y, Liu J, Leng C, An Y, Zhang S, Wang K. L p regularization for bioluminescence tomography based on the split Bregman method. Mol Imaging Biol. 2016;18:830–7.

Google Scholar

Liu Y, Liu J, An Y, Jiang S, Ye J, Mao Y, et al. Novel trace norm regularization method for fluorescence molecular tomography reconstruction. In: Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI; 2017. p. 10047.

Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A. Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. J Biophotonics. 2017;10:24–45.

Google Scholar